• Title/Summary/Keyword: CRUDTRAN

Search Result 2, Processing Time 0.015 seconds

A Study on Corrosion Product Behavior Prediction for Domestic PWR Primary System by using CRUDTRAN (CRUDTRAN을 이용한 국내 PWR 1차계통내 부식생성물 거동예측에 관한 연구)

  • Song, Jong Soon;Yoon, Tae-Bin;Lee, Sang-Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.253-262
    • /
    • 2015
  • Radionuclide deposited on the surface of several internal and external systems in a nuclear power plant is created by the activation of corrosion products from nuclear reactor structural materials and fission products. Especially, the constant contact between water and the surface corrodes the inside where primary system makes coolants and corrosion products mixed. Also, these are circulated along the systems. For comparing models, CRUDTRAN, DISER, MIGA-RT and CPAIR codes are analyzed to predict the quantity of radionuclide and corrosion product of primary reactor that are used at the stage of designing. The corrosion products behavior of domestic PWR primary system was predicted by using CRUDTRAN. This study aims to increase the reliability of corrosion product evaluation model by comparing the actual values and calculated values with the data of a Westing House-type Nuclear Power Plant.

A Study on the Application of CRUDTRAN Code in Primary Systems of Domestic Pressurized Heavy-Water Reactors for Prediction of Radiation Source Term

  • Song, Jong Soon;Cho, Hoon Jo;Jung, Min Young;Lee, Sang Heon
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.638-644
    • /
    • 2017
  • The importance of developing a source-term assessment technology has been emphasized owing to the decommissioning of Kori nuclear power plant (NPP) Unit 1 and the increase of deteriorated NPPs. We analyzed the behavioral mechanism of corrosion products in the primary system of a pressurized heavy-water reactor-type NPP. In addition, to check the possibility of applying the CRUDTRAN code to a Canadian Deuterium Uranium Reactor (CANDU)-type NPP, the type was assessed using collected domestic onsite data. With the assessment results, it was possible to predict trends according to operating cycles. Values estimated using the code were similar to the measured values. The results of this study are expected to be used to manage the radiation exposures of operators in high-radiation areas and to predict decommissioning processes in the primary system.