The Journal of the Korea institute of electronic communication sciences
/
v.15
no.3
/
pp.465-472
/
2020
Recently, various deep neural networks based methods have been proposed for audio event detection. In this study, we improved the performance of audio event detection by adopting an attention approach to a baseline CRNN. We applied context gating at the input of the baseline CRNN and added an attention layer at the output. We improved the performance of the attention based CRNN by using the audio data of strong labels in frame units as well as the data of weak labels in clip levels. In the audio event detection experiments using the audio data from the Task 4 of the DCASE 2018/2019 Challenge, we could obtain maximally a 66% relative increase in the F-score in the proposed attention based CRNN compared with the baseline CRNN.
The Journal of the Korea institute of electronic communication sciences
/
v.14
no.2
/
pp.389-396
/
2019
In this paper, various architectures of deep neural networks were applied for sound event detection and their performances were compared using a common audio database. The FNN, CNN, RNN and CRNN were implemented using hyper-parameters optimized for the database as well as the architecture of each neural network. Among the implemented deep neural networks, CRNN performed best at all testing conditions and CNN followed CRNN in performance. Although RNN has a merit in tracking the time-correlations in audio signals, it showed poor performance compared with CNN and CRNN.
Fishing boat capsizing accidents account for more than half of all capsize accidents. These can occur for a variety of reasons, including inexperienced operation, bad weather, and poor maintenance. Due to the size and influence of the industry, technological complexity, and regional diversity, fishing ships are relatively under-researched compared to commercial ships. This study aimed to predict the rolling motion time series of fishing boats using an image-based deep learning model. Image-based deep learning can achieve high performance by learning various patterns in a time series. Three image-based deep learning models were used for this purpose: Xception, ResNet50, and CRNN. Xception and ResNet50 are composed of 177 and 184 layers, respectively, while CRNN is composed of 22 relatively thin layers. The experimental results showed that the Xception deep learning model recorded the lowest Symmetric mean absolute percentage error(sMAPE) of 0.04291 and Root Mean Squared Error(RMSE) of 0.0198. ResNet50 and CRNN recorded an RMSE of 0.0217 and 0.022, respectively. This confirms that the models with relatively deeper layers had higher accuracy.
In the era of big data, the field of artificial intelligence is showing remarkable growth, and in particular, the image classification learning methods by deep learning are becoming an important area. Various studies have been actively conducted to further improve the performance of CNNs, which have been widely used in image classification, among which a representative method is the Convolutional Recurrent Neural Network (CRNN) algorithm. The CRNN algorithm consists of a combination of CNN for image classification and RNNs for recognizing time series elements. However, since the inputs used in the RNN area of CRNN are the flatten values extracted by applying the convolution and pooling technique to the image, pixel values in the same phase in the image appear in different order. And this makes it difficult to properly learn the sequence of arrangements in the image intended by the RNN. Therefore, this study aims to improve image classification performance by proposing a novel hybrid method of CNN and RNN applying the concepts of encoder and decoder. In this study, the effectiveness of the new hybrid method was verified through various experiments. This study has academic implications in that it broadens the applicability of encoder and decoder concepts, and the proposed method has advantages in terms of model learning time and infrastructure construction costs as it does not significantly increase complexity compared to conventional hybrid methods. In addition, this study has practical implications in that it presents the possibility of improving the quality of services provided in various fields that require accurate image classification.
In this paper, we proposed the weakly-supervised deep learning algorithm for active sonar target recognition based on pseudo labeling using Conventional Recurrent Neural Network (CRNN) model widely used for acoustic signal processing because it can effectively utilize small and unbalanced active sonar data. Active sonar simulation data assuming two different SNRs and clutter environments were used in the training and testing process, and spectrogram obtained by applying Short Time Fourier Transform (STFT) to the simulation data was used as a feature factor for algorithm training. The algorithm proposed in this paper was evaluated based on the target and nontarget F1-score using test data independent of training data. As a result, it was confirmed that the CRNN model showed significant performance not only in typical acoustic signal processing but also active sonar target recognition. Also, pseudo-labeling helps to improve the performance of the active sonar target recognition algorithm used the CRNN model.
In order to reduce the harmful effects on the human body caused by the recent increase in the generation of fine dust in Korea, there is a need for technology to help predict the level of fine dust and take precautions. In this paper, we propose a 1D Convolutional-Recurrent Neural Network (1-D CRNN) model to predict the level of fine dust in Korea. The proposed model is a structure that combines the CNN and the RNN, and uses domestic and foreign fine dust, wind direction, and wind speed data for data prediction. The proposed model achieved an accuracy of about 76%(Partial up to 84%). The proposed model aims to data prediction model for time series data sets that need to consider various data in the future.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.3
/
pp.740-753
/
2023
Text recognition in natural scene images is a challenging problem in computer vision. The accurate identification of ship number characters can effectively improve the level of ship traffic management. However, due to the blurring caused by motion and text occlusion, the accuracy of ship number recognition is difficult to meet the actual requirements. To solve these problems, this paper proposes a dual-branch network based on the CRNN identification network. The network couples image restoration and character recognition. The CycleGAN module is used for blur restoration branch, and the Pix2pix module is used for character occlusion branch. The two are coupled to reduce the impact of image blur and occlusion. Input the recovered image into the text recognition branch to improve the recognition accuracy. After a lot of experiments, the model is robust and easy to train. Experiments on CTW datasets and real ship maps illustrate that our method can get more accurate results.
This paper proposes a Convolutional Recurrent Neural Net (CRNN) structure that can simultaneously reflect both static and dynamic characteristics of seismic waveforms for various earthquake events classification. Addressing various earthquake events, including not only micro-earthquakes and artificial-earthquakes but also macro-earthquakes, requires both effective feature extraction and a classifier that can discriminate seismic waveform under noisy environment. First, we extract the static characteristics of seismic waveform through an attention-based convolution layer. Then, the extracted feature-map is sequentially injected as input to a multi-input single-output Long Short-Term Memory (LSTM) network structure to extract the dynamic characteristic for various seismic event classifications. Subsequently, we perform earthquake events classification through two fully connected layers and softmax function. Representative experimental results using domestic and foreign earthquake database show that the proposed model provides an effective structure for various earthquake events classification.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.10
/
pp.1447-1452
/
2022
Seoul Special City, one of the world's top 10 cities and Metro City, has traditional urban manufacturing industries such as printing, sewing, and mechanical metals. Small business owners in these manufacturing clusters have developed in the form of mutual assistance. Due to the nature of the agglomeration site, each process is handled by an individual company. It is difficult for relatively small business owners to prepare order processing services that provide real-time logistics movement information between processes. This paper collects and analyzes existing logistics data for smooth order and delivery of small business owners in package manufacturing and special printing fields We design an artificial intelligence Fulfillment Service Platform system with CRNN, k-NN, and ID3 Decision Tree Algorithm. Through this study, it is expected that it will greatly contribute to increasing sales and improving capabilities by allowing small business owners in integrated areas to use individual orders and delivery customized services through the Cloud network.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.174-176
/
2022
In this paper, we present a mobile application for 'personalized customized learning' for children with articulation disorders using an artificial intelligence (AI) algorithm. A dataset (Data Set) to analyze, judge, and predict the learner's articulation situation and degree. In particular, we designed a prototype model by looking at how AI can be improved and advanced compared to existing applications from the UX/UI (GUI) aspect. So far, the focus has been on visual experience, but now it is an important time to process data and provide a UX/UI (GUI) experience to users. The UX/UI (GUI) of the proposed mobile application was to be provided according to the learner's articulation level and situation by using CRNN (Convolution Recurrent Neural Network) of DeepLearning and Auto Encoder GPT-3 (Generative Pretrained Transformer). The use of artificial intelligence algorithms will provide a learning environment with a high degree of perfection to children with articulation disorders, thereby enhancing the learning effect. I hope that you do not have any fear or discomfort in conversation by improving the perfection of articulation with 'personalized and customized learning'.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.