• 제목/요약/키워드: CRITIC 방법

검색결과 25건 처리시간 0.025초

RLS 기반 Actor-Critic 학습을 이용한 로봇이동 (Robot Locomotion via RLS-based Actor-Critic Learning)

  • 김종호;강대성;박주영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.234-237
    • /
    • 2005
  • 강화학습을 위한 많은 방법 중 정책 반복을 이용한 actor-critic 학습 방법이 많은 적용 사례를 통해서 그 가능성을 인정받고 있다. Actor-critic 학습 방법은 제어입력 선택 전략을 위한 actor 학습과 가치 함수 근사를 위한 critic 학습이 필요하다. 본 논문은 critic의 학습을 위해 빠른 수렴성을 보장하는 RLS(recursive least square)를 사용하고, actor의 학습을 위해 정책의 기울기(policy gradient)를 이용하는 새로운 알고리즘을 제안하였다. 그리고 이를 실험적으로 확인하여 제안한 논문의 성능을 확인해 보았다.

  • PDF

多入力 시스템의 자율학습제어를 위한 차등책임 적응비평학습 (Differentially Responsible Adaptive Critic Learning ( DRACL ) for the Self-Learning Control of Multiple-Input System)

  • 김형석
    • 전자공학회논문지S
    • /
    • 제36S권2호
    • /
    • pp.28-37
    • /
    • 1999
  • 재 강화 학습 방법을 다수의 제어입력을 가진 시스템에 대한 자율적 제어 기법 습득에 활용하기 위해서 차등책임 적응비평 학습구조를 제안하였다. 재 강화 학습은 여러 단계의 제어동작 끝에 얻어지는 최종 비평값을 활용하여 그 전에 행해졌던 제어 동작을 강화 혹은 약화 학습하는 자율적 학습방법이다. 대표적인 재강화학습 방법은 적응비평학습 구조를 이용하는 방법인데 비평모듈과 동작모듈을 이용하여 외부 비평 값을 최대로 활용함으로써 학습효과를 극대화시키는 방법이다. 이 학습방법에서는 단일한 제어입력을 갖는 시스템으로만 적용이 제한된다는 단점이 있다. 제안한 차등책임 적응비평 학습 구조에서는 비평함수를 제어 입력 인자의 함수로 구축한 다음 제어인자에 대한 차별 화된 비평 값을 부분미분을 통하여 산출함으로써 다수의 제어입력을 가진 시스템의 제어기술 학습이 가능하게 하였다. 제안한 학습제어 구조는 학습속도가 빠른 CMAC 신경회로망을 이용하여 구축하였으며 2개의 제어입력을 갖는 2-D Cart-Pole 시스템과 3 개의 제어입력을 갖는 인간구조 로봇시스템의 앉는 동작의 학습제어 시뮬레이션을 통하여 효용성을 확인하였다.

  • PDF

액터-크리틱 퍼지 강화학습을 이용한 기는 로봇의 제어 (Control of Crawling Robot using Actor-Critic Fuzzy Reinforcement Learning)

  • 문영준;이재훈;박주영
    • 한국지능시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.519-524
    • /
    • 2009
  • 최근에 강화학습 기법은 기계학습 분야에서 많은 관심을 끌어왔다. 강화학습 관련 연구에서 가장 유력하게 사용되어 온 방법들로는 가치함수를 활용하는 기법, 제어규칙(policy) 탐색 기법 및 액터-크리틱 기법 등이 있는데, 본 논문에서는 이들 중 연속 상태 및 연속 입력을 갖는 문제를 위하여 액터-크리틱 기법의 틀에서 제안된 알고리즘들과 관련된 내용을 다룬다. 특히 본 논문은 퍼지 이론에 기반을 둔 액터-크리틱 계열 강화학습 기법인 ACFRL 알고리즘과, RLS 필터와 NAC(natural actor-critic) 기법에 기반을 둔 RLS-NAC 기법을 접목하는 방안을 집중적으로 고찰한다. 고찰된 방법론은 기는 로봇의 제어문제에 적용되고, 학습 성능의 비교로부터 얻어진 몇 가지 결과가 보고된다.

CRITIC 방법을 이용한 형상유사도 기반의 면 객체 자동매칭 방법 (A new method for automatic areal feature matching based on shape similarity using CRITIC method)

  • 김지영;허용;김대성;유기윤
    • 한국측량학회지
    • /
    • 제29권2호
    • /
    • pp.113-121
    • /
    • 2011
  • 본 연구에서는 기하학적 정보를 바탕으로 생성된 유사도 기반의 면 객체 자동매칭 방법을 제안하였다. 이를 위하여 서로 다른 공간자료에서 교차되는 후보 매칭 쌍을 추출하고, CRITIC방법을 이용하여 연동 기준별 가중치를 자동으로 생성하여 선형조합으로 추출된 후보매칭 쌍 간의 형상유사도를 측정하였다. 이때, 훈련자료에서 조정된 상자도표의 특이점 탐색을 적용하여 도출된 임계값 이상인 경우가 매칭 쌍으로 탐색된다. 제안된 방법을 이종의 공간자료(수지치도 2.0과 도로명주소 기본도)의 일부지역에 적용한 결과, 시각적으로 형상이 유사하고 교차되는 면적이 넓은 건물객체가 매칭 되었으며, 통계적으로 F-Measure가 0.932로 높게 나타났다.

Self-Imitation Learning을 이용한 개선된 Deep Q-Network 알고리즘 (Improved Deep Q-Network Algorithm Using Self-Imitation Learning)

  • 선우영민;이원창
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.644-649
    • /
    • 2021
  • Self-Imitation Learning은 간단한 비활성 정책 actor-critic 알고리즘으로써 에이전트가 과거의 좋은 경험을 활용하여 최적의 정책을 찾을 수 있도록 해준다. 그리고 actor-critic 구조를 갖는 강화학습 알고리즘에 결합되어 다양한 환경들에서 알고리즘의 상당한 개선을 보여주었다. 하지만 Self-Imitation Learning이 강화학습에 큰 도움을 준다고 하더라도 그 적용 분야는 actor-critic architecture를 가지는 강화학습 알고리즘으로 제한되어 있다. 본 논문에서 Self-Imitation Learning의 알고리즘을 가치 기반 강화학습 알고리즘인 DQN에 적용하는 방법을 제안하고, Self-Imitation Learning이 적용된 DQN 알고리즘의 학습을 다양한 환경에서 진행한다. 아울러 그 결과를 기존의 결과와 비교함으로써 Self-Imitation Leaning이 DQN에도 적용될 수 있으며 DQN의 성능을 개선할 수 있음을 보인다.

RLS기반 Natural Actor-Critic 알고리즘을 이용한 트레이딩 전략 (Trading Strategy Using RLS-Based Natural Actor-Critic algorithm)

  • 강대성;김종호;박주영;박경욱
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.238-241
    • /
    • 2005
  • 최근 컴퓨터를 이용하여 효과적인 트레이드를 하려는 투자자들이 늘고 있다. 본 논문에서는 많은 인공지능 방법론 중에서 강화학습(reinforcement learning)을 이용하여 효과적으로 트레이딩하는 방법에 대해서 다루려한다. 특히 강화학습 중에서 natural policy gradient를 이용하여 actor의 파라미터를 업데이트하고, value function을 효과적으로 추정하기 위해 RLS(recursive least-squares) 기법으로 critic 부분을 업데이트하는 RLS 기반 natural actor-critic 알고리즘을 이용하여 트레이딩을 수행하는 전략에 대한 가능성을 살펴 보기로 한다.

  • PDF

강화학습에 의해 학습된 기는 로봇의 성능 비교 (Performance Comparison of Crawling Robots Trained by Reinforcement Learning Methods)

  • 박주영;정규백;문영준
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.33-36
    • /
    • 2007
  • 최근에 인공지능 분야에서는, 국내외적으로 강화학습(reinforcement learning)에 관한 관심이 크게 증폭되고 있다. 강화학습의 최근 경향을 살펴보면, 크게 가치함수를 직접 활용하는 방법(value function-based methods), 제어 전략에 대한 탐색을 활용하는 방법(policy search methods), 그리고 액터-크리틱 방법(actor-critic methods)의 세가지 방향으로 발전하고 있음을 알 수 있다. 본 논문에서는 이중 세 번째 부류인 액터-크리틱 방법 중 NAC(natural actor-critic) 기법의 한 종류인 RLS-NAC(recursive least-squares based natural actor-critic) 알고리즘을 다양한 트레이스 감쇠계수를 사용하여 연속제어입력(real-valued control inputs)으로 제어되는 Kimura의 기는 로봇에 대해 적용해보고, 그 성능을 기존의 SGA(stochastic gradient ascent) 알고리즘을 이용하여 학습한 경우와 비교해보도록 한다.

  • PDF

Actor-Critic 모델을 이용한 포트폴리오 자산 배분에 관한 연구 (A Study on Portfolio Asset Allocation Using Actor-Critic Model)

  • 칼리나 바야르체첵;이주홍;송재원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.439-441
    • /
    • 2020
  • 기존의 균등배분, 마코위츠, Recurrent Reinforcement Learning 방법들은 수익들을 최대화하거나 위험을 최소화하고, Risk Budgeting 방법은 각 자산에 목표 리스크를 배분하여 최적의 포트폴리오를 찾는다. 그러나 이 방법들은 미래의 최적화된 포트폴리오를 잘 찾아주지 못하는 문제점들이 있다. 본 논문은 자산 배분을 위한 Deterministic Policy Gradient 기반의 Actor Critic 모델을 개발하였고, 기존의 방법들보다 성능이 우수함을 검증한다.

운반차-막대 시스템을 위한 적응비평학습에 의한 CMAC 제어계 (CMAC Controller with Adaptive Critic Learning for Cart-Pole System)

  • 권성규
    • 한국지능시스템학회논문지
    • /
    • 제10권5호
    • /
    • pp.466-477
    • /
    • 2000
  • 이 논문에서는 운반차-막대 시스템을 제어하기 위한 CMAC을 이용한 적응 학습 제어계를 개발하기 위하여, 적응비평학습을 이용하는 신경망 제어계에 관한 여러 연구 문헌들을 조사하고, ASE 요소를 이용하는 적응비평학습 기법을 CMAC을 바탕으로 하는 제어계에 통합하였다. 적응비평학습 기법을 CMAC에 구현하는데 있어서의 변환 문제를 검토하고, CMAC 제어계와 ASE 제어계가 운반차-막대 문제를 학습하는 속도를 비교하여, CMAC 제어계의 학습 속도가 빠르기는 하지만, 입력 공간의 더 넓은 영역에 대해서는 학습효과를 발휘하지 못하는 문제의 관점에서 적응비평학습 방법이 CMAC의 특성과 어울리는지를 고찰하였다.

  • PDF

RLS 기반 Actor-Critic 학습을 이용한 로봇이동 (Robot Locomotion via RLS-based Actor-Critic Learning)

  • 김종호;강대성;박주영
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.893-898
    • /
    • 2005
  • 강화학습 방법론 중 하나의 부류인 액터-크리틱 알고리즘은 제어압력 선택 문제에 있어서 최소한의 계산만을 필요로 하고, 확률적 정책을 명시정으로 다룰 수 있는 장점 때문에 최근에 인공지능 분야에서 많은 관심을 끌고 있다. 액터-크리틱 네트워크는 제어압력 선택 전략을 위한 액터 네트워크와 가치 함수 근사를 위한 크리틱 네트워크로 구성되며, 우수한 제어입력의 서택과 정화한 가치 함수 관사를 최대한 신속하게 달성하기 위하여, 학습 과정 동안 액터와 크리틱은 자신들의 파라미터 백터를 적응적으로 변화시키는 전략을 구사한다. 본 논문은 크리틱의 학습을 위해 빠른 수렴성을 보장하는 RLS (Recursive Least Square)를 사용하고, 액터의 학습을 위해 정책의 기울기(Policy Gradient)를 이용하는 새로운 종류의 알고리즘을 고려한다. 고려된 알고리즘의 적용 가능성은 두개의 링크를 갖는 로봇에 대한 실험을 통하여 예시된다.