• Title/Summary/Keyword: CRACK CLOSURE

Search Result 196, Processing Time 0.028 seconds

A Study on the Determination of Closing Level for Finite Element Analysis of Fatigue Crack Closure

  • Choi, Hyeon-Chang
    • Journal of Mechanical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.401-407
    • /
    • 2000
  • An elastic-plastic finite element analysis is performed to investigate detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The finite element analysis performed under plane stress using 4-node isoparametric elements can predict fatigue crack closure behavior. The mesh of constant element size along crack surface can not predict the opening level of fatigue crack. The crack opening level for the constant mesh size increases linearly from initial crack growth. The crack opening level for variable mesh size, is almost flat after crack tip has passed the monotonic plastic zone. The prediction of crack opening level using the variable mesh size proportioning the reversed plastic zone size with the opening stress intensity factors presents a good agreement with the experimental data regardless of stress ratios.

  • PDF

AE을 이용한 강의 피로균열전파 거동에 관한 연구 (A Study on Fatigue Crack Growth Behavior of Steel Using AE)

  • 정규연;김선진;김영식;오명석;김영대
    • 동력기계공학회지
    • /
    • 제5권2호
    • /
    • pp.50-56
    • /
    • 2001
  • In this study, the effect of specimen thickness and stress ratio on fatigue crack growth in S45C steel was investigated. Acoustic emission was monitored during the fatigue crack growth test. Both crack closure and AE technique were used in assessing fatigue crack growth behavior. Constant amplitude loading tests were performed on CT type specimen with three different thicknesses and stress ratios. Crack closure was investigated to explain the influence of specimen thickness and stress ratio on the fatigue crack growth in the second growth region. The crack closure effect was decreased with specimen thickness and stress ratio.

  • PDF

A106 Gr B강 배관용접부의 잔류응력해석 및 피로균열성장특성 (Fatigue Crack Propagation Characteristics in HAZ of A106 Gr B Steel Pipe Weldments)

  • 김철한;배동호;김복기;조선영;홍정균;이범노
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1999년도 특별강연 및 춘계학술발표대회 개요집
    • /
    • pp.237-240
    • /
    • 1999
  • In this study, residual stresses of the weldment were calculated by finite element analysis(FEA) and experiment. And, the crack closure behaviour and fatigue crack growth characteristics in field of residual stress of A106 Gr B steel pipe weldment were investigated under various stress ratio. Obtained results are as follows. I) $K_{op}$ was independent of $K_{max}$, and load ratio in fatigue crack growth. 2) In variation of load ratio, the scatter band of crack growth curve was reduced by half considering crack closure. and 3) Neglecting crack closure behaviour, actual fatigue crack growth rate can be underestimated' and Actual fatigue crack growth rate can be overestimated by $K_{res}$, in tensile residual stress field.

  • PDF

피로균열 개폐구거동의 미시적 모델에 관한 연구 (A Study on the Microscopic Model for Fatigue Crack Closure Behavior)

  • 오세욱;강상훈
    • 한국해양공학회지
    • /
    • 제4권1호
    • /
    • pp.81-87
    • /
    • 1990
  • Fatigue crack closure levels based on the behavior of residual displacements on crack surfaces, are determined analytically according to the microscopic crack closure mechanisms, i.e., whether the first contact of crack surfaces takes place at the very crack tip or on the surfaces near the tip. The comparative analysis on the two models is carried out empirically by the constant amplitude fatigue tests on 2024-T3 aluminum alloy plate, and it shows that under negative stress ratio, the case of the first contact at crack tip gives better agreement with the experimental results than the other.

  • PDF

피로균열 개폐구거동의 미시적 모델에 관한 연구 (A Study on the Microscopic Model for Fatigue Crack Closure Behavior)

  • 오세욱;강상훈
    • 한국해양공학회지
    • /
    • 제4권1호
    • /
    • pp.87-87
    • /
    • 1990
  • Fatigue crack closure levels based on the behavior of residual displacements on crack surfaces, are determined analytically according to the microscopic crack closure mechanisms, i.e., whether the first contact of crack surfaces takes place at the very crack tip or on the surfaces near the tip. The comparative analysis on the two models is carried out empirically by the constant amplitude fatigue tests on 2024-T3 aluminum alloy plate, and it shows that under negative stress ratio, the case of the first contact at crack tip gives better agreement with the experimental results than the other.

되풀이 소성영역 크기를 이용한 피로 균열 닫힘 거동의 유한요소해석 (Finite Element Analysis for Fatigue Crack Closure Behavior Using Reversed Plastic Zone Size)

  • 최현창
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1703-1711
    • /
    • 2003
  • An elastic-plastic finite element analysis is performed to investigate detailed closure behaviour of fatigue cracks in residual stress fields and the numerical results are compared with experimental results. The finite element analysis performed under plane stress using contact elements can predict fatigue crack closure behaviour. The mesh of constant element size along crack surface can not predict the opening level of fatigue crack. Specially, the mesh of element sizes depending upon the reversed plastic zone size included the effect of crack opening point can precisely predict the opening level. By using the concept of the mesh of element sizes depending upon the reversed plastic zone size included the effect of crack opening point, the opening level of fatigue crack can be determined very well.

박판합금재료의 피로균열 전파특성에 대한 피로수명예측과 활용 (Prediction and Application of Fatigue Life on Characteristics of Fatigue Crack Propagation of Thin Sheet Alloy)

  • 이억섭;김승권
    • 한국정밀공학회지
    • /
    • 제24권2호
    • /
    • pp.103-109
    • /
    • 2007
  • In fatigue life prediction, it is important that fatigue life is affected by crack closure phenomenon in thin sheet Al alloy. In this research, we attempt to (1)analyze the characteristics of fatigue crack propagation in constant loading condition for thin sheet Al 2024-T3 alloy which is generally used in transportation structures, (2)identify the crack closure phenomenon in thin sheet comparing experimental results of thin and thick sheet specimen under same fatigue loading condition. In using the fatigue related material constants from these fatigue crack propagation analysis, we attempt to (3)operate the fatigue life estimating process with considering crack closure phenomenon and (4)analyze the experimental and prediction results of fatigue life in thin sheet Al alloy.

複合組織鋼의 疲勞균열진전거동과 균열닫힘조건에 미치는 應力比 및 微視組織크기의 영향 (Influence of stress ratio and microstructural size on fatigue crack growth and crack closure in near-threshold)

  • 김정규;황돈영
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1343-1349
    • /
    • 1988
  • In this study, it is investigated for the effects of stress ratio and grain size on fatigue crack growth behavior and crack closure, in ferrite-martensite dual phase steels. The results obtained are as follows ; .DELTA. $K_{th}$ is independent of the ferrite grain size, but decreases with increasing stress ratio. The relation between .DELTA. $K_{th}$ and stress ratio R is as follows : .DELTA. $K_{th}$ =15.1(1-0.95R). But (.DELTA. $K_{eff}$)$_{th}$ in terms of crack closure is approximately 2.5 MPa.root.m. Also, variation of the degree of crack deflection to crack tip opening displacement at the minimum load is considered as a parameter of crack closure.e.e.

過大, 過小應力下에서의 疲勞크랙發생 傳播擧動 (II) - 탄소동재의 내부크랙을 중심으로- (Behavior of Initiation and Propagation of Fatigue Crack under Periodic Overstressing(II) - About the Inside Crack of the Caron Steel-)

  • 송삼홍;원시태
    • 대한기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.188-197
    • /
    • 1986
  • 본 연구에서는 응력이 변동되는 경우 내부크랙 전파특성을 중심으로 내부크랙 전파거동을 표면크랙 전파거동과 비교 검토하였다.

Stress Intensity Factors for Elliptical Arc Through Cracks in Mechanical Joints by Virtual Crack Closure Technique

  • Heo, Sung-Pil;Yang, Won-Ho;Kim, Cheol
    • Journal of Mechanical Science and Technology
    • /
    • 제16권2호
    • /
    • pp.182-191
    • /
    • 2002
  • The reliable stress intensity factor analysis is required for fracture mechanics design or safety evaluation of mechanical joints at which cracks often initiate and grow. It has been reported that cracks in mechanical joints usually nucleate as corner cracks at the faying surface of joints and grow as elliptical arc through cracks. In this paper, three dimensional finite element analyses are performed for elliptical arc through cracks in mechanical joints. Thereafter stress intensity factors along elliptical crack front including two surface points are determined by the virtual crack closure technique. Virtual crack closure technique is a method to calculate stress intensity factor using the finite element analysis and can be applied to non-orthogonal mesh. As a result, the effects of clearance on the stress intensity factor are investigated and crack shape are then predicted.