• Title/Summary/Keyword: CPW-Feed

Search Result 49, Processing Time 0.02 seconds

A Dual frequency Monopole Antenna using CPW Feed Line (코프래너 급전 이중 주파수 모노폴 안테나)

  • Kim, Joon-Il;Choi, Soon-Shin;Jee, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.8 s.338
    • /
    • pp.47-54
    • /
    • 2005
  • The design method for a dual frequency antenna using CPW feed lines is presented. The antenna structures can be simplified by CPW feed lines and easily designed on integrated circuits. The presented antenna has two resonant frequency ranges and each respective resonant frequency is determined by its own length of monopole antenna. We used an impedance matching method by using a monopole coupling related to the ground of CPW feed lines As a result, the resonant frequencies were 5.25[GHz] and 23.5[GHz] and their bandwidths $35.2\%,\;and\;41.3\%$, respectively, and also, the separation of the two frequencies $370\;%$. We presented an analytical designing method to implement a dual frequency monopole antenna and showed simple antenna structures having two frequency ranges for RFIC Integrations.

Design and fabrication of the Printed Type Folded Slot Antenna (인쇄회로형 폴디드 슬롯 안테나 설계.제작)

  • 송면규;한중호;이종녕;양규식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.267-272
    • /
    • 1999
  • In general, printed antennas have a narrow bandwidth characteristic and many people want to find out the method of bandwidth improvement through complicated procedures. So we want to reform the conventional printed antenna characteristic by using the folded dipole's superiority to unit dipole. But it is hard to feed the printed folded dipole antenna, we use the CPW, which is widely used in microwave IC or MMIC applications and have many advantages to the conventional microstrip line, to feed the printed folded slot antenna. It is confirmed that the improvement in the bandwidth characteristic of CPW fed folded slot antenna, as much as 20%, through the measurement of designed and implemented antenna.

  • PDF

Design of CPW fed antenna using high dielectric constant materials (고유전율 유전체를 이용한 CPW 급전 안테나의 설계)

  • 심성훈;강종윤;윤석진;윤영중;김현재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.559-562
    • /
    • 2000
  • In this paper, coplanar waveguide fed antennas (CPWFAs) insetting two slits to boundary of the square microstrip patch are presented. These slits play roles in not only lowering a resonant frequency but also fine-tuning for the proposed antenna together with open stub of CPW feed line. The CPWFAs were designed and manufactured using microwave dielectrics (Al,Mg)TaO$_2$ having high dielectric-constant ($\varepsilon$r=20). The return loss and input impedance of the CPWFAs were investigated in terms of the slit length and open stub length of CPW feed line. It is shown that a resonant frequency decreases as the slit length increases.

  • PDF

Design and Fabrication of the Printed Type Folded Slot Antenna (인쇄회로형 폴디드 슬롯 안테나 설계ㆍ제작)

  • 송면규;양규식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.301-304
    • /
    • 1999
  • In general, printed antennas have a narrow bandwidth characteristic and many people want to find out the method of bandwidth improvement through complicated procedure. So we want to reform the conventional printed antenna characteristic by using the folded dipole's superiority to unit dipole. But it is hard to feed thr printed folded dipole antenna, we use the CPW, which is widely used in microwave IC or MMIC applications and have many advantage to the conventional microstrip line, to feed the folded slot antenna. It is confirmed that the improvement in the bandwidth characteristic of CPW fed folded slot antenna, as much as 20%, through the measurment of designed and implemented antenna.

  • PDF

A Technique for Broadbanding the CPW-Fed Bow-Tie Slot Antenna

  • Kim Sung-Hak;Wen Lijun;Ko Han-Woong;park Dong-Hee;Ahn Bierng-Chearl
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.1
    • /
    • pp.14-20
    • /
    • 2005
  • In this paper, a technique is presented for broadbanding the bow-tie slot antenna fed by a CPW(coplanar waveguide). The bandwidth performance of existing bow-tie slot designs is greatly enhanced by optimizing the slot shape and properly adjusting the characteristic impedance of the coplanar waveguide feeding the slot. To connect the 50-ohm input coaxial line to the CPW feed line, a linear taper in the CPW is employed. The designed antenna shows a 3.5 $\~$ 10.0 GHz impedance bandwidth, a 3.5 $\~$ 6.0 GHz pattern bandwidth, and a 5.5 $\~$ 7.5 dBi gain over 3.5 $\~$ 6.0 GHz. Above 6.0 GHz, the antenna radiation pattern appreciably deviates from the typical dipolar pattern.

Disk Sector Antenna fed by CPW for UWB Communications (UWB 통신용 CPW 급전 디스크 섹터 안테나)

  • Lim, Jung-Hyun;Lee, Min-Soo;Yang, Doo-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.303-312
    • /
    • 2009
  • In this paper, we design and fabricate a disk sector antenna fed by CPW fur UWB communications. Also, we insert a rectangular slit on the arc-edge of the disk sector antenna. Then, the antenna has the directivity of E-면. In order to design the antenna, the input impedance is matched with the feed line of $50{\Omega}$ as varying the physical antenna parameters, which are the radius, the flare angle of disk sector, the length of ground, and the length of ground comer near by feed tine. Dimension of the antenna designed for UWB communication is $72mm{\times}26mm$ and bandwidth through computer simulation is $3{\sim}13GHz$. From the measured results, the bandwidth is $1.98{\sim}11GHz$. Return loss and gain of the fabricated antenna are -50.38dB, 1.34dBi at 3.5GHz, -12.27dB, 3.35dBi at 5.5GHz, -23.2dB, 3.8dBi at 8GHz and -16.17dB, 5.2dBi at 10GHz, respectively.

Bent slot loop antenna for the dual band wireless LAN (이중대역 무선 랜용 굴곡형 슬롯 루프 안테나)

  • Lee, Young-Soon;Im, Seong-Gyun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • In this paper, Coplanar waveguide(CPW)-fed slot loop antenna, which is applicable to the dual band(2.4GHz~2.4835GHz, 5.15GHz~5.825GHz) for the wireless LAN, is proposed. In order to miniaturize the proposed antenna, slot loop is bent by meandering. The resonant frequencies in the required dual band are adjusted by variation of the resonant length of slot loop as well as slot width. In particular, use of capacitive coupling CPW feed provides impedance matching without a seperate matching circuit, because the amount of electromagnetic coupling can be controlled by the offset between feed and radiator. As a result, it has been observed that the proposed antenna satisfies not only the required return loss(${\leq}10dB$) but also has high efficiency(${\geq}80%$) over the whole frequency band. In order to check the validity of the proposed antenna, some simulated results for return loss and radiation pattern are presented in comparison with the measured results.

Dual-Band Fractal Antenna with Bandwidth Improvement for Wireless Applications

  • Nsir, Chiraz Ben;Boussetta, Chokri;Ribero, Jean-Marc;Gharsallah, Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.75-80
    • /
    • 2021
  • In this paper, a dual-band Koch Snowflake antenna is proposed for wireless communication systems. Fractal geometry, CPW-feed and stepped ground planes are used to improve the impedance bandwidth. By properly introducing a hexagonal split-ring slot to radiating element, a lower frequency band is generated. The proposed structure is fabricated and tested. Experiment results exhibit dual-band of 0.73-0.98 GHZ and 1.6-3.1 GHz which makes this antenna suitable candidate for GSM900, GSM1800, UTMS2100, Wi-Fi 2400 and LTE2600 bands. In addition, a good radiation pattern, a satisfactory peak gain and a radiation efficiency, which reaches 95%, are achieved.

Design of Compact Wideband Loop Antenna with Horizontal Slits for Terrestrial DTV and UHD TV Applications (지상파 DTV 및 UHD TV용 수평 슬릿이 추가된 소형 광대역 루프 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.581-586
    • /
    • 2020
  • In this paper, the design process and method for a compact wideband loop antenna for terrestrial digital TV (DTV) and ultra high definition (UHD) TV applications was proposed. Horizontal slits were added on the two circular sectors of the proposed loop antenna in order to miniaturize the existing wideband loop antenna consisting of a square loop and two circular sectors. A CPW transmission line was inserted in the center of the lower circular sector as a feed line. The CPW feed line was designed using the 75 ohm port impedance for DTV and UHD TV applications, and a tapered center-signal line was designed to improve the impedance matching. The final designed antenna was fabricated on an FR4 substrate with a thickness of 0.8 mm. The experiment results show that the proposed compact loop antenna operates in the frequency band of 444.3-820.1 MHz for a VSWR < 2, which fully covers the DTV and UHD TV bands.

A Design for a CPW-Fed Monopole Antenna with Two Modified Half Circular Rings for WLAN/WiMAX Operations

  • Kim, Woo-Su;Yoon, Joong-Han
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.159-166
    • /
    • 2015
  • In this paper, a novel design for a triple-band coplanar waveguide (CPW)-fed monopole antenna for WLAN/WiMAX operations is proposed. The proposed antenna is printed on an FR4 substrate with an area of 22.0 mm × 30.0 mm, a thickness of 1.0 mm, and a relative permittivity of 4.4. The effects of various parameters of the proposed for triple band operation is investigated. Two half circular rings and a microstrip feed line are fabricated on the substrate to achieve triple band operation and good impedance matching. Prototypes of the proposed antenna have been fabricated and tested. Experiment results reveal that the measured return loss exhibits an acceptable agreement with the simulated return loss and satisfies the impedance bandwidth requirement of -10 dB, while simultaneously covering the WLAN and WiMAX bands. In addition, the proposed antenna shows good radiation characteristics and gains in the three operating bands.