• Title/Summary/Keyword: CPU time

Search Result 946, Processing Time 0.029 seconds

다중프로세서 컴퓨터시스템을 위한 버스중재 프로토콜의 성능 분석 및 비교

  • 김병량
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1992.10a
    • /
    • pp.2-2
    • /
    • 1992
  • 최근 여러 분야에서 컴퓨터의 용도가 확산되고 더 높은 computing power에 대한 요구가 증가함에 따라, 컴퓨터의 성능을 향상시키기 위하여 프로세서의 고속화와 함께 시스템 구조의 개선을 위한 많은 연구가 진행되고 있다. 한 시스템내에 여러 개의 CPU들이 존재하는 다중프로세서 시스템(multiprocessor system) 구조를 가진 슈퍼미니급 중형 컴퓨터들은 상호연결망으로서 버스(bus) 방식을 많이 채택하고 있다. 버스 구조는 하드웨어가 간단하여 구현이 용이하지만, 여러 개의 시스템 지원들(프로세서들, 기억장치 모듈들 및 입출력 모듈들)이 버스를 공유하기 때문에 경합으로 인한 지연 시간이 발생하게 된다. 이러한 지연 시간으로 인한 성능 저하를 개선하는 방법으로는 버스 수의 증가와 최적 통제 프로토콜의 설계가 있다. 본 연구에서는 여러 개의 버스를 가진 다중프로세서 시스템에서 4가지 대표적인 버스 중재 프로토콜들에 대해 성능을 분석, 비교하여 최적 프로토콜을 제시하고자 한다. 이러한 대규모 하드웨어에 의하여 구현되는 시스템에서 주요 설계 요소들에 따른 시스템 성능 분석과 비교는 설계 단계에서 필수적인 과정이다. 그러나 하드웨어를 만들어서 분석하는 방법은 시간과 비용이 많이 소요되기 때문에 소프트웨어 시뮬레이션 방법이 널리 사용되고 있다. 본 연구팀에서는 시뮬레이션 전용언어인 SLAM II를 이용하여 다중프로세서 시스템의 시뮬레이터를 개발하고, 버스중재 프로토콜(bus arbitration protocol)을 용이하게 변경할 수 있도록 하여 각각의 성능을 비교하였다. 이 연구에서 비교된 프로토콜들은 고정-우선순위 방식(fixed-priority scheme), FIFO(first-in first-out) 방식, 라운드-로빈 방식(round-robin scheme), 및 회전-우선순위 방식(rotating-priority scheme) 등이다. 실험은 시스템의 주요 요소들인 프로세서와 기억장치 모듈 및 버스의 수들을 변경시킴으로써 다양한 시스템 환경에 대한 분석을 시도하였다. 작업 부하가 되는 기하장치 액세스 요구간 시간가격(inter-memory access request time interval)은 필요에 따라서 고정값 또는 확률 분포함수를 사용하였다. 특히, 실행될 프로그램의 특성에 따라 각 프로토콜의 성능이 다르게 나타날 수 있음을 검증하였으며, 기억장치의 지역성(memory locality)에 대한 프로토콜들의 성능도 비교하였다.

  • PDF

A Tool for On-the-fly Repairing of Atomicity Violation in GPU Program Execution

  • Lee, Keonpyo;Lee, Seongjin;Jun, Yong-Kee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.1-12
    • /
    • 2021
  • In this paper, we propose a tool called ARCAV (Atomatic Recovery of CUDA Atomicity violation) to automatically repair atomicity violations in GPU (Graphics Processing Unit) program. ARCAV monitors information of every barrier and memory to make actual memory writes occur at the end of the barrier region or to make the program execute barrier region again. Existing methods do not repair atomicity violations but only detect the atomicity violations in GPU programs because GPU programs generally do not support lock and sleep instructions which are necessary for repairing the atomicity violations. Proposed ARCAV is designed for GPU execution model. ARCAV detects and repairs four patterns of atomicity violations which represent real-world cases. Moreover, ARCAV is independent of memory hierarchy and thread configuration. Our experiments show that the performance of ARCAV is stable regardless of the number of threads or blocks. The overhead of ARCAV is evaluated using four real-world kernels, and its slowdown is 2.1x, in average, of native execution time.

An Exploratory Study on Block chain based IoT Edge Devices for Plant Operations & Maintenance(O&M) (플랜트 O&M을 위한 블록체인 기반 IoT Edge 장치의 적용에 관한 탐색적 연구)

  • Ryu, Yangsun;Park, Changwoo;Lim, Yongtaek
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.1
    • /
    • pp.34-42
    • /
    • 2019
  • Receiving great attention of IoT and 4th industrial revolution, the necessity comes to the fore of the plant system which aims making it smart and effective. Smart Factory is the key realm of IoT to apply with the concept to optimize the entire process and it presents a new and flexible production paradigm based on the collected data from numerous sensors installed in a plant. Especially, the wireless sensor network technology is receiving attention as the key technology of Smart Factory, researches to interface those technology is actively in progress. In addition, IoT devices for plant industry security and high reliable network protocols are under development to cope with high-risk plant facilities. In the meanwhile, Blockchain can support high security and reliability because of the hash and hash algorithm in its core structure and transaction as well as the shared ledger among all nodes and immutability of data. With the reason, this research presents Blockchain as a method to preserve security and reliability of the wireless communication technology. In regard to that, it establishes some of key concepts of the possibility on the blockchain based IoT Edge devices for Plant O&M (Operations and Maintenance), and fulfills performance verification with test devices to present key indicator data such as transaction elapsed time and CPU consumption rate.

DoS-Resistance Authentication Protocol for Wreless LAN (DoS 공격에 강한 무선 랜 인증 프로토콜)

  • 김민현;이재욱;최영근;김순자
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.5
    • /
    • pp.3-10
    • /
    • 2004
  • A Wireless Lan has an importance of access control, because we can use wireless Internet via AP(Access Point). Moreover, to use wireless LAN, we will go through authentication process of EAP. DoS(Denial of Service) attack is one of the fatal attack about these AP access and authentication process. That is, if malicious attacker keeps away access of AP or consumes memory of server and calculation ability of CPU and etc. compulsorily in authentication process, legal user can't get any services. In this paper, we presents the way of protection against the each attack that is classified into access control, allocation of resource, attack on authentication protocol. The first thing, attack to access control, is improved by pre-verification and the parameter of security level. The second, attack of allocation of resource, is done by partial stateless protocol. And the weak of protocol is done by time-stamp and parameter of access limitation.

VM Scheduling for Efficient Dynamically Migrated Virtual Machines (VMS-EDMVM) in Cloud Computing Environment

  • Supreeth, S.;Patil, Kirankumari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1892-1912
    • /
    • 2022
  • With the massive demand and growth of cloud computing, virtualization plays an important role in providing services to end-users efficiently. However, with the increase in services over Cloud Computing, it is becoming more challenging to manage and run multiple Virtual Machines (VMs) in Cloud Computing because of excessive power consumption. It is thus important to overcome these challenges by adopting an efficient technique to manage and monitor the status of VMs in a cloud environment. Reduction of power/energy consumption can be done by managing VMs more effectively in the datacenters of the cloud environment by switching between the active and inactive states of a VM. As a result, energy consumption reduces carbon emissions, leading to green cloud computing. The proposed Efficient Dynamic VM Scheduling approach minimizes Service Level Agreement (SLA) violations and manages VM migration by lowering the energy consumption effectively along with the balanced load. In the proposed work, VM Scheduling for Efficient Dynamically Migrated VM (VMS-EDMVM) approach first detects the over-utilized host using the Modified Weighted Linear Regression (MWLR) algorithm and along with the dynamic utilization model for an underutilized host. Maximum Power Reduction and Reduced Time (MPRRT) approach has been developed for the VM selection followed by a two-phase Best-Fit CPU, BW (BFCB) VM Scheduling mechanism which is simulated in CloudSim based on the adaptive utilization threshold base. The proposed work achieved a Power consumption of 108.45 kWh, and the total SLA violation was 0.1%. The VM migration count was reduced to 2,202 times, revealing better performance as compared to other methods mentioned in this paper.

A new lightweight network based on MobileNetV3

  • Zhao, Liquan;Wang, Leilei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • The MobileNetV3 is specially designed for mobile devices with limited memory and computing power. To reduce the network parameters and improve the network inference speed, a new lightweight network is proposed based on MobileNetV3. Firstly, to reduce the computation of residual blocks, a partial residual structure is designed by dividing the input feature maps into two parts. The designed partial residual structure is used to replace the residual block in MobileNetV3. Secondly, a dual-path feature extraction structure is designed to further reduce the computation of MobileNetV3. Different convolution kernel sizes are used in the two paths to extract feature maps with different sizes. Besides, a transition layer is also designed for fusing features to reduce the influence of the new structure on accuracy. The CIFAR-100 dataset and Image Net dataset are used to test the performance of the proposed partial residual structure. The ResNet based on the proposed partial residual structure has smaller parameters and FLOPs than the original ResNet. The performance of improved MobileNetV3 is tested on CIFAR-10, CIFAR-100 and ImageNet image classification task dataset. Comparing MobileNetV3, GhostNet and MobileNetV2, the improved MobileNetV3 has smaller parameters and FLOPs. Besides, the improved MobileNetV3 is also tested on CPU and Raspberry Pi. It is faster than other networks

ECPS: Efficient Cloud Processing Scheme for Massive Contents (클라우드 환경에서 대규모 콘텐츠를 위한 효율적인 자원처리 기법)

  • Na, Moon-Sung;Kim, Seung-Hoon;Lee, Jae-Dong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.4
    • /
    • pp.17-27
    • /
    • 2010
  • Major IT vendors expect that cloud computing technology makes it possible to reduce the contents service cycle, speed up application deployment and skip the installation process, reducing operational costs, proactive management etc. However, cloud computing environment for massive content service solutions requires high-performance data processing to reduce the time of data processing and analysis. In this study, Efficient_Cloud_Processing_Scheme(ECPS) is proposed for allocation of resources for massive content services. For high-performance services, optimized resource allocation plan is presented using MapReduce programming techniques and association rules that is used to detect hidden patterns in data mining, based on levels of Hadoop platform(Infrastructure as a service). The proposed ECPS has brought more than 20% improvement in performance and speed compared to the traditional methods.

A Predictive Virtual Machine Placement in Decentralized Cloud using Blockchain

  • Suresh B.Rathod
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.60-66
    • /
    • 2024
  • Host's data during transmission. Data tempering results in loss of host's sensitive information, which includes number of VM, storage availability, and other information. In the distributed cloud environment, each server (computing server (CS)) configured with Local Resource Monitors (LRMs) which runs independently and performs Virtual Machine (VM) migrations to nearby servers. Approaches like predictive VM migration [21] [22] by each server considering nearby server's CPU usage, roatative decision making capacity [21] among the servers in distributed cloud environment has been proposed. This approaches usage underlying server's computing power for predicting own server's future resource utilization and nearby server's resource usage computation. It results in running VM and its running application to remain in waiting state for computing power. In order to reduce this, a decentralized decision making hybrid model for VM migration need to be proposed where servers in decentralized cloud receives, future resource usage by analytical computing system and takes decision for migrating VM to its neighbor servers. Host's in the decentralized cloud shares, their detail with peer servers after fixed interval, this results in chance to tempering messages that would be exchanged in between HC and CH. At the same time, it reduces chance of over utilization of peer servers, caused due to compromised host. This paper discusses, an roatative decisive (RD) approach for VM migration among peer computing servers (CS) in decentralized cloud environment, preserving confidentiality and integrity of the host's data. Experimental result shows that, the proposed predictive VM migration approach reduces extra VM migration caused due over utilization of identified servers and reduces number of active servers in greater extent, and ensures confidentiality and integrity of peer host's data.

Development of a real-time surface image velocimeter using an android smartphone (스마트폰을 이용한 실시간 표면영상유속계 개발)

  • Yu, Kwonkyu;Hwang, Jeong-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.469-480
    • /
    • 2016
  • The present study aims to develop a real-time surface image velocimeter (SIV) using an Android smartphone. It can measure river surface velocity by using its built-in sensors and processors. At first the SIV system figures out the location of the site using the GPS of the phone. It also measures the angles (pitch and roll) of the device by using its orientation sensors to determine the coordinate transform from the real world coordinates to image coordinates. The only parameter to be entered is the height of the phone from the water surface. After setting, the camera of the phone takes a series of images. With the help of OpenCV, and open source computer vision library, we split the frames of the video and analyzed the image frames to get the water surface velocity field. The image processing algorithm, similar to the traditional STIV (Spatio-Temporal Image Velocimeter), was based on a correlation analysis of spatio-temporal images. The SIV system can measure instantaneous velocity field (1 second averaged velocity field) once every 11 seconds. Averaging this instantaneous velocity measurement for sufficient amount of time, we can get an average velocity field. A series of tests performed in an experimental flume showed that the measurement system developed was greatly effective and convenient. The measured results by the system showed a maximum error of 13.9 % and average error less than 10 %, when we compared with the measurements by a traditional propeller velocimeter.

Automated Satellite Image Co-Registration using Pre-Qualified Area Matching and Studentized Outlier Detection (사전검수영역기반정합법과 't-분포 과대오차검출법'을 이용한 위성영상의 '자동 영상좌표 상호등록')

  • Kim, Jong Hong;Heo, Joon;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.687-693
    • /
    • 2006
  • Image co-registration is the process of overlaying two images of the same scene, one of which represents a reference image, while the other is geometrically transformed to the one. In order to improve efficiency and effectiveness of the co-registration approach, the author proposed a pre-qualified area matching algorithm which is composed of feature extraction with canny operator and area matching algorithm with cross correlation coefficient. For refining matching points, outlier detection using studentized residual was used and iteratively removes outliers at the level of three standard deviation. Throughout the pre-qualification and the refining processes, the computation time was significantly improved and the registration accuracy is enhanced. A prototype of the proposed algorithm was implemented and the performance test of 3 Landsat images of Korea. showed: (1) average RMSE error of the approach was 0.435 pixel; (2) the average number of matching points was over 25,573; (3) the average processing time was 4.2 min per image with a regular workstation equipped with a 3 GHz Intel Pentium 4 CPU and 1 Gbytes Ram. The proposed approach achieved robustness, full automation, and time efficiency.