• Title/Summary/Keyword: CPU bandwidth

Search Result 79, Processing Time 0.026 seconds

FlashEDF: An EDF-style Scheduling Scheme for Serving Real-time I/O Requests in Flash Storage

  • Lim, Seong-Chae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.26-34
    • /
    • 2018
  • In this paper, we propose a scheduling scheme that can efficiently serve I/O requests having deadlines in flash storage. The I/O requests with deadlines, namely, real-time requests, are assumed to be issued for streaming services of continuous media. Since a Web-based streaming server commonly supports downloads of HTMLs or images, we also aim to quickly process non-real-time I/O requests, together with real-time ones. For this purpose, we adopt the well-known rate-reservation EDF (RR-EDF) algorithm for determining scheduling priorities among mixed I/O requests. In fact, for the use of an EDF-style algorithm, overhead of task's switching should be low and predictable, as with its application of CPU scheduling. In other words, the EDF algorithm is inherently unsuitable for scheduling I/O requests in HDD storage because of highly varying latency times of HDD. Unlike HDD, time for reading a block in flash storage is almost uniform with respect to its physical location. This is because flash storage has no mechanical component, differently from HDD. By capitalizing on this uniform block read time, we compute bandwidth utilization rates of real-time requests from streams. Then, the RR-EDF algorithm is applied for determining how much storage bandwidth can be assigned to non-real-time requests, while meeting deadlines of real-time requests. From this, we can improve the service times of non-real-time requests, which are issued for downloads of static files. Because the proposed scheme can expand flexibly the scheduling periods of streams, it can provide a full usage of slack times, thereby improving the overall throughput of flash storage significantly.

Virtual Network Embedding based on Node Connectivity Awareness and Path Integration Evaluation

  • Zhao, Zhiyuan;Meng, Xiangru;Su, Yuze;Li, Zhentao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3393-3412
    • /
    • 2017
  • As a main challenge in network virtualization, virtual network embedding problem is increasingly important and heuristic algorithms are of great interest. Aiming at the problems of poor correlation in node embedding and link embedding, long distance between adjacent virtual nodes and imbalance resource consumption of network components during embedding, we herein propose a two-stage virtual network embedding algorithm NA-PVNM. In node embedding stage, resource requirement and breadth first search algorithm are introduced to sort virtual nodes, and a node fitness function is developed to find the best substrate node. In link embedding stage, a path fitness function is developed to find the best path in which available bandwidth, CPU and path length are considered. Simulation results showed that the proposed algorithm could shorten link embedding distance, increase the acceptance ratio and revenue to cost ratio compared to previously reported algorithms. We also analyzed the impact of position constraint and substrate network attribute on algorithm performance, as well as the utilization of the substrate network resources during embedding via simulation. The results showed that, under the constraint of substrate resource distribution and virtual network requests, the critical factor of improving success ratio is to reduce resource consumption during embedding.

Development of System Architecture and Communication Protocol for Unmanned Ground Vehicle (무인자율주행차량의 시스템 아키텍쳐 및 통신 프로토콜 설계)

  • Moon, Hee-Chang;Woo, Hoon-Je;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.873-880
    • /
    • 2008
  • This paper deals with the peer-to-peer data communication to connect each distributed levels of developed unmanned system according to the JAUS. The JAUS is to support the acquisition of unmanned system by providing a mechanism for reducing system life-cycle costs. Each of distributed levels of the JAUS protocol divides into a system, some of subsystems, nodes and components/instances, each of which may be independent or interdependence. We have to distribute each of the levels because high performance is supported in order to create several sub-processor computing data in one processor with high CPU speed performance. To complement such disadvantage, we must think the concept that a distributed processing agrees with separating each of levels from the JAUS protocol. Therefore, each of distributed independent levels send data to another level and then it has to be able to process the received data in other levels. So, peer-to-peer communication has to control a data flow of distributed levels. In this research, we explain each of levels of the JAUS and peer-to-peer communication structure among the levels using our developed unmanned ground vehicle.

Adaptive Memory Controller for High-performance Multi-channel Memory

  • Kim, Jin-ku;Lim, Jong-bum;Cho, Woo-cheol;Shin, Kwang-Sik;Kim, Hoshik;Lee, Hyuk-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.808-816
    • /
    • 2016
  • As the number of CPU/GPU cores and IPs in SOC increases and applications require explosive memory bandwidth, simultaneously achieving good throughput and fairness in the memory system among interfering applications is very challenging. Recent works proposed priority-based thread scheduling and channel partitioning to improve throughput and fairness. However, combining these different approaches leads to performance and fairness degradation. In this paper, we analyze the problems incurred when combining priority-based scheduling and channel partitioning and propose dynamic priority thread scheduling and adaptive channel partitioning method. In addition, we propose dynamic address mapping to further optimize the proposed scheme. Combining proposed methods could enhance weighted speedup and fairness for memory intensive applications by 4.2% and 10.2% over TCM or by 19.7% and 19.9% over FR-FCFS on average whereas the proposed scheme requires space less than TCM by 8%.

Development of Algorithm for 2-D Automatic Mesh Generation and Remeshing Technique Using Bubble Packing Method (I) -Linear Analysis- (버블패킹방법을 이용한 2차원 자동격자 생성 및 재구성 알고리듬 개발(I) -선형 해석-)

  • Jeong, Sun-Wan;Kim, Seung-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.1004-1014
    • /
    • 2001
  • The fully automatic algorithm from initial finite element mesh generation to remeshing in two dimensional geometry is introduced using bubble packing method (BPM) for finite element analysis. BPM determines the node placement by force-balancing configuration of bubbles and the triangular meshes are made by Delaunay triangulation with advancing front concept. In BPM, we suggest two node-search algorithms and the adaptive/recursive bubble controls to search the optimal nodal position. To use the automatically generated mesh information in FEA, the new enhanced bandwidth minimization scheme with high efficiency in CPU time is developed. In the remeshing stage, the mesh refinement is incorporated by the control of bubble size using two parameters. And Superconvergent Patch Recovery (SPR) technique is used for error estimation. To verify the capability of this algorithm, we consider two elasticity problems, one is the bending problem of short cantilever beam and the tension problem of infinite plate with hole. The numerical results indicate that the algorithm by BPM is able to refine the mesh based on a posteriori error and control the mesh size easily by two parameters.

File System Support for Multimedia Streaming in Internet Home Appliances (인터넷 홈서버를 위한 스트리밍 전용 파일 시스템)

  • 박진연;송승호;진종현;원유집;박승민;김정기
    • Journal of Broadcast Engineering
    • /
    • v.6 no.3
    • /
    • pp.246-259
    • /
    • 2001
  • Due to recent rapid deployment of Internet streaming service and digital broadcasting service, the issue of how to efficiently support streaming workload in so called "Internet Home Appliance" receives prime interests from industry as well as academia. The underlying dilemma is that it may not be feasible to put cutting edge CPU, boards, disks and other peripherals into that type of device. The primary reason is its cost. Usually, Internet Home Appliances has its dedicated usage, e.g. Internet Radio, and thus it does not require high-end CPU nor high-end Va subsystem. The same reasoning applies to I/O subsystem. In Internet Home Appliances dedicated to handle compressed moving picture, it is not equipped with high end SCSI disk with fast rotational speed. Thus, it is mandatory to devise elaborate software algorithm to exploit the available hardware resources and maximize the efficiency of the system. This paper presents our experiences in the design and implementation of a new multimedia file system which can efficiently deliver the required disk bandwidth for a periodic I/O workload. We have implemented the file system on the Linux operating system, and examined itsperformance under streaming I/O workload. The results of the study show that the proposed file system exhibits superior performance than the Linux Ext2 file system under streaming I/O workload. The result of this work not only contribute to advance the state f art file system technology for multimedia streaming but also put forth the software which is readily available and can be deployed. deployed.

  • PDF

A Study on Determination of the Number of Work Processes Reflecting Characteristics of Program on Computational Grid (계산 그리드 상에서 프로그램의 특성을 반영한 작업 프로세스 수의 결정에 관한 연구)

  • Cho, Soo-Hyun;Kim, Young-Hak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.71-85
    • /
    • 2006
  • The environment of computational grid is composed of the LAN/WAN each of which has different efficiency and heterogeneous network conditions, and where various programs are running. In this environment, the role of the resource selection broker is very important because the work of each node is performed by considering heterogeneous network environment and the computing power of each node according to the characteristics of a program. In this paper, a new resource selection broker is presented that decides the number of work processes to be allocated at each node by considering network state information and the performance of each node according to the characteristics of a program in the environment of computational grid. The proposed resource selection broker has three steps as follows. First, the performance ratio of each node is computed using latency-bandwidth-cpu mixture information reflecting the characteristics of a program, and the number of work processes that will be performed at each node are decided by this ratio. Second, RSL file is automatically made based on the number of work processes decided at the previous step. Finally, each node creates work processes by using that RSL file and performs the work which has been allocated to itself. As experimental results, the proposed method reflecting characteristics of a program, compared with the existing (uniformity) and latency-bandwidth method is improved $278%\sim316%,\;524%\sim595%,\;924%\sim954%$ in the point of work amount, work process number, and node number respectively.

  • PDF

Secure routing security algorithm S-ZRP used Zone Routing Protocol in MANET (MANET환경에서 Zone Routing Protocol을 이용한 안전한 경로설정 보안 알고리즘 S-ZRP)

  • Seo Dae-Youl;Kim Jin-Chul;Kim Kyoung-Mok;Oh Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.4 s.346
    • /
    • pp.13-21
    • /
    • 2006
  • An mobile ad hoc network(MANET) is a collection of wireless computers (nodes), communicating among themselves over multi-hop paths, without the help of any infrastructure such as base stations or access points. Prior research in MANET has generally studied the routing problem in a non-adversarial setting, assuming a trusted environment. In this paper, we design and evaluate the Secure Zone Routing Protocol(T-ZRP), a secure ad hoc network routing protocol is based on the design of the hash chain. In order to support use with nodes of limited CPU processing capability, and to guard against Denial-of-Service attacks in which an attacker attempts to cause other nodes to consume excess network bandwidth or processing time, we use efficient one-way hash functions and don't use asymmetric cryptographic operations in the protocol. Proposed algorithm can safely send to data through authentication mechanism and integrity about routing establishment.

Optimizing Skyline Query Processing Algorithms on CUDA Framework (CUDA 프레임워크 상에서 스카이라인 질의처리 알고리즘 최적화)

  • Min, Jun;Han, Hwan-Soo;Lee, Sang-Won
    • Journal of KIISE:Databases
    • /
    • v.37 no.5
    • /
    • pp.275-284
    • /
    • 2010
  • GPUs are stream processors based on multi-cores, which can process large data with a high speed and a large memory bandwidth. Furthermore, GPUs are less expensive than multi-core CPUs. Recently, usage of GPUs in general purpose computing has been wide spread. The CUDA architecture from Nvidia is one of efforts to help developers use GPUs in their application domains. In this paper, we propose techniques to parallelize a skyline algorithm which uses a simple nested loop structure. In order to employ the CUDA programming model, we apply our optimization techniques to make our skyline algorithm fit into the performance restrictions of the CUDA architecture. According to our experimental results, we improve the original skyline algorithm by 80% with our optimization techniques.

A pioneer scheme in the detection and defense of DrDoS attack involving spoofed flooding packets

  • Kavisankar, L.;Chellappan, C.;Sivasankar, P.;Karthi, Ashwin;Srinivas, Avireddy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1726-1743
    • /
    • 2014
  • DDoS (Distributed Denial of Service) has been a continuous threat to the cyber world with the growth in cyber technology. This technical evolution has given rise to a number of ultra-sophisticated ways for the attackers to perform their DDoS attack. In general, the attackers who generate the denial of service, use the vulnerabilities of the TCP. Some of the vulnerabilities like SYN (synchronization) flooding, and IP spoofing are used by the attacker to create these Distributed Reflected Denial of Service (DrDoS) attacks. An attacker, with the assistance of IP spoofing creates a number of attack packets, which reflects the flooded packets to an attacker's intended victim system, known as the primary target. The proposed scheme, Efficient Spoofed Flooding Defense (ESFD) provides two level checks which, consist of probing and non-repudiation, before allocating a service to the clients. The probing is used to determine the availability of the requested client. Non-repudiation is taken care of by the timestamp enabled in the packet, which is our major contribution. The real time experimental results showed the efficiency of our proposed ESFD scheme, by increasing the performance of the CPU up to 40%, the memory up to 52% and the network bandwidth up to 67%. This proves the fact that the proposed ESFD scheme is fast and efficient, negating the impact on the network, victim and primary target.