미디어 플레이어에서의 디코딩 과정은 많은 연산을 필요로 하며, CPU로부터 높은 소비전력을 초래한다. 디코딩 연산을 줄이는 것은 CPU 소비 전력을 감소시킬 수 있지만 사용자로부터 비디오 품질을 저하시키게 된다. 본 논문에서는 H.264의 품질 확장성을 이용하여 새로운 CPU 전력 관리 기법을 제안한다. 첫째, VQM(Video Quality Metric)을 사용하여 계층적 비디오 코딩의 서로 다른 양자화 인자를 고려한 새로운 비디오 품질 모델을 제안한다. 그리고 이전 디코딩 시간과 프레임 크기를 선택적으로 융합한 디코딩 시간 예측기법에 기반한 새로운 동적 전압 기법을 제안한다. 최신 스마트폰에서 구현하였고, 사용자 테스트를 수행하였다. 제안한 기법을 실제 측정에 적용하였을 때 리눅스 동적 전압 및 주파수 조절(DVFS) 거버너에 비해 34%의 에너지 감소를 보였고 사용자 테스트를 통해 실험 영상의 품질 하락을 사용자는 인지하지 못하거나 용인될 수 있음을 확인하였다.
본 논문에서는 고성능 컴퓨팅 시스템의 성능 향상을 위한 효율적인 동적 작업부하 균등화 정책을 제안한다. 이 정책은 시스템 자원인 CPU와 메모리를 효율적으로 사용하여 고성능 컴퓨팅 시스템의 처리량을 최대화하고, 각 작업의 수행시간을 최소화한다. 또한 이 정책은 수행중인 작업의 메모리 요구량과 각 노드의 부하 상태를 파악하여 작업을 동적으로 할당한다. 이때 작업을 할당받은 노드가 과부하 상태가 되면 다른 노드로 작업을 이주시켜 각 노드의 작업부하를 균등하게 유지함으로써 작업의 대기시간을 줄이고, 각 작업의 수행시간을 단축한다. 본 논문에서는 시뮬레이션을 통하여 제안하는 동적 작업부하 균등화 정책이 기존의 메모리 기반의 작업부하 균등화 정책에 비해 고성능 컴퓨팅 시스템의 성능 향상 면에서 우수함을 보인다.
The universe is well known to be consists of dark energy, dark matter and the standard model (SM) particles. The dark matter dominates the density of matter in the universe. The dark matter is thought to be linked with dark photon which are hypothetical hidden sector particles similar to photons in electromagnetism but potentially proposed as force carriers. Due to the extremely small cross-section of dark matter, a large amount of data is needed to be processed. Therefore, we need to optimize the central processing unit (CPU) time. In this work, using MadGraph5 as a simulation tool kit, we examined the CPU time, and cross-section of dark matter at the electron-positron collider considering three parameters including the center of mass energy, dark photon mass, and coupling constant. The signal process pertained to a dark photon, which couples only to heavy leptons. We only dealt with the case of dark photon decaying into two muons. We used the simplified model which covers dark matter particles and dark photon particles as well as the SM particles. To compare the CPU time of simulation, one or more cores of the KISTI-5 supercomputer of Nurion Knights Landing and Skylake and a local Linux machine were used. Our results can help optimize high-energy physics software through high-performance computing and enable the users to incorporate parallel processing.
목적: ML-EM (The maximum likelihood-expectation maximization) 기법은 방출과 검출 과정에 대한 통계학적 모델에 기반한 재구성 알고리즘이다. ML-EM은 결과 영상의 정확성과 유용성에 있어 많은 이점이 있는 반면 반복적인 계산과 방대한 작업량 때문에 CPU(central processing unit)로 처리할 때 상당한 연산시간이 소요되었다. 본 연구에서는 GPU(graphic processing unit)의 병렬 처리 기술을 ML-EM 알고리즘에 적용하여 영상을 재구성하였다. 대상 및 방법: 엔비디아사(社)의 CUDA 기술을 이용하여 ML-EM 알고리즘의 투사 및 역투사 과정을 병렬화 전략을 구상하였으며 Geforce 9800 GTX+ 그래픽 카드를 이용하여 병렬화 연산을 수행하여 기존의 단일 CPU기반 연산법과 비교하였다. 각 반복횟수마다 투사 및 역투사 과정에 걸리는 총 지연 시간과 퍼센트 오차(percent error)를 측정하였다. 총 지연 시간에는 RAM과 GPU 메모리 간의 데이터 전송 지연 시간도 포함하였다. 결과: 모든 반복횟수에 대해 CPU 기반 ML-EM 알고리즘보다 GPU 기반 알고리즘이 더 빠른 성능을 나타내는 것을 확인하였다. 단일 CPU 및 GPU 기반 ML-EM의 32번 반복연산에 있어 각각 3.83초와 0.26초가 걸렸으며 GPU의 병렬연산의 경우 15배 정도의 개선된 성능을 보였다. 반복횟수가 1024까지 증가하였을 경우, CPU와 GPU 기반 알고리즘은 각각 18분과 8초의 연산시간이 걸렸다. GPU 기반 알고리즘이 약 135배 빠른 처리속도를 보였는데 이는 단일 CPU 계산이 특정 반복횟수 이후 나타나는 시간 지연에 따른 것이다. 결과적으로, GPU 기반 계산이 더 작은 편차와 빠른 속도를 보였다. 결론: ML-EM 알고리즘에 기초한 GPU기반 병렬 계산이 처리 속도와 안정성을 더 증진시킴을 확인하였으며 이를 활용해 다른 영상 재구성 알고리즘에도 적용시킬 수 있을 것으로 기대한다.
최근 고화질 영상의 증가와 더불어 대용량 영상 데이터의 처리는 높은 연산이 요구되어 병렬 처리 설계가 선택되고 있다. 영상 처리에서 나타나는 많은 단순 연산이 병렬처리 가능한 경우, CPU 기반 병렬처리보다는 GPU 기반 병렬처리를 적용하는 것이 계산문제의 시간과 공간 계산 복잡도를 줄일 수 있다. 본 논문은 영상에서 샷 경계 탐지 알고리즘의 병렬 설계와 구현을 연구하였다. 제안하는 샷 경계 탐지 알고리즘은 프레임 간 지역 화소 밝기 비교와 전역 히스토그램 정보를 이용하는데, 이들 데이터의 계산은 대량의 데이터에 대한 높은 병렬성을 갖는다. 이들 연산의 병렬처리를 최대화하기 위해 화소 밝기와 히스토그램의 계산을 NVIDIA GPU에서 병렬 설계 하였다. GPU 기반 샷 탐지 방법은 국가기록원에서 선택된 10개의 비디오 데이터에 대한 성능 테스트를 수행하였다. 테스트에서 GPU 기반 알고리즘의 탐지율은 CPU 기반 알고리즘과 유사하였으나 약 10배의 연산 속도가 개선되었다.
IoT (Internet of Things) 장치는 취약한 아이디/비밀번호 사용, 인증되지 않은 펌웨어 업데이트 등 많은 보안 취약점을 보여 악성코드의 공격 대상이 되고 있다. 그러나 CPU 구조의 다양성으로 인해 악성코드 분석 환경 설정과 특징 설계에 어려움이 있다. 본 논문에서는 CPU 구조와 독립된 악성코드의 특징 표현을 위해 실행 파일의 바이트 순서를 이용한 시계열 특징을 설계하고 순환 신경망을 통해 분석한다. 제안하는 특징은 바이트 순서의 부분 엔트로피 계산과 선형 보간을 통한 고정 길이의 시계열 패턴이다. 추출된 특징의 시계열 변화는 RNN과 LSTM으로 학습시켜 분석한다. 실험에서 IoT 악성코드 탐지는 높은 성능을 보였지만, 패밀리 분류는 비교적 성능이 낮았다. 악성코드 패밀리별 엔트로피 패턴을 시각화하여 비교했을 때 Tsunami와 Gafgyt 패밀리가 유사한 패턴을 나타내 분류 성능이 낮아진 것으로 분석되었다. 제안된 악성코드 특징의 데이터 간 시계열 변화 학습에 RNN보다 LSTM이 더 적합하다.
VOD 서버에 서비스를 요청하는 단말장치의 종류가 다양해짐으로 인해 VOD 서비스 사업자가 제공해야 하는 해상도 버전의 종류 역시 다양해지고 있다. 단말장치가 서비스를 요청할 때 서버는 단말장치에 맞는 해상도 버전으로 서비스를 제공해야 하는데 대개의 경우 서버의 저장공간의 용량이 제한되어 있기 때문에 비디오별로 모든 해상도 버전들을 저장하고 있기는 어렵다. 단말장치가 서버에 저장되어 있는 해상도 버전을 요청한 경우라면 바로 서비스가 가능하다. 하지만 단말장치가 서버에 저장되어 있지 않은 해상도 버전을 요청했다면 저장되어 있던 버전을 이용해 해상도를 변환한 후 서비스를 해주어야 한다. 만약 서버가 해상도를 변환하는 빈도가 높아 CPU 가용성이 충분하지 않다면 다른 단말장치들의 서비스 요청에 바로 응할 수 없게 된다. 따라서 서버에 저장되는 파일들을 CPU 사용률을 줄일 수 있는 해상도의 버전들로 저장하여 CPU 가용성을 높인다면 보다 많은 단말장치의 요청을 허용할 수 있을 것이다. 본 논문에서는 한정된 저장용량을 가진 VOD 서버가 단말장치의 서비스 요청들을 가능한 많이 허용하기 위해 저장해야 할 각 비디오의 해상도 버전들을 분기한정 기법을 이용하여 찾는 알고리즘을 제시한다.
반도체 공정에서는 소자 내부의 물리량 계산을 통해 불순물의 움직임을 해석하여 결점을 검출하는 시뮬레이션을 수행하게 된다. 이를 위해 유한 차분 시간 영역 알고리즘(Finite-Difference Time-Domain, 이하 FDTD)과 같은 수치해석 기법이 사용된다. 반도체 칩의 집적도 향상으로 인하여 소자의 크기는 나노스케일 시대로 접어들었으며, 시뮬레이션 사이즈 또한 커지고 있는 추세이다. 이에 따라 CPU와 GPU 같은 하나의 연산 장치에서 수행할 수 없는 문제와 다중의 연산 장치로 구성된 한 대의 컴퓨터에서 수행할 수 없는 문제가 발생하기도 한다. 이러한 문제로 인해 분산 병렬처리를 통한 FDTD 알고리즘 연구가 진행되고 있다. 하지만 기존의 연구들은 단일 연산장치만을 이용하기 때문에 GPU를 사용하는 경우 연산 속도는 빠르나 메모리의 제한이 있으며 CPU의 경우 GPU에 비해 연산 속도가 느린 단점이 존재한다. 이를 해결하기 위해 본 논문에서는 CPU, GPU의 이기종 연산 장치를 포함하는 컴퓨터로 구축된 클러스터 상에서 작업 사이즈에 제한되지 않고 시뮬레이션 수행이 가능한 컴퓨팅 모델을 구현하였다. 점대점 통신 기반의 MPI 라이브러리를 이용하여 연산 장치 간 통신을 통한 시뮬레이션을 테스트 하였고 사용하는 연산 장치의 종류와 수에 상관없이 시뮬레이션이 정상 동작함을 확인하였다.
최근 GPU의 뛰어난 병렬 연산 처리 능력을 이용하여 신호 처리나 통신 시스템을 소프트웨어로 구현하기 위한 다양한 연구가 진행되고 있다. 본 논문에서는 DVB-T에서 사용되는 2K/8K FFT를 GPU를 이용하여 처리함으로써 소프트웨어 모의실험에 소요되는 시간을 줄였다. 우리는 먼저 DTV 전송 표준 방식의 일종인 DVB-T 시스템을 CPU로 구현할 때 소요되는 처리 시간을 모의실험을 통해서 추정한다. 그리고 DVB-T의 핵심 연산 처리기의 일종인 FFT 처리를 NVIDIA사의 대용량 GPU 프로세서를 이용하여 소프트웨어로 구현한다. 본 논문은 CPU와 GPU 간의 데이터 전송에 소요되는 오버헤드를 줄이기 위해 스트림 처리 기법, 외부 전역 메모리 전송 시간을 단축하기 위한 결합 전송 기법 (coalescing), 공유 메모리 활용을 높이기 위한 변수 설계 기법 등을 통해서 연산시간을 대폭 단축하였다. 그 결과 제안된 방식은 DVB-T의 2K/8K FFT 모드의 경우 CPU 기반의 FFT 처리 방식 대비 약 20~30배, NVIDIA사에서 제공하는 FFT 라이브러리 (CUFFT version 2.1) 대비 약 1.8배 그리고 기존에 발표된 타 방식 대비 약 1.5~10배 정도 빠른 처리 능력을 보인다.
컴퓨터 시스템 분야의 대표적인 문제 중 하나는 메모리의 처리 속도가 CPU의 처리 속도보다 매우 느리기 때문에 생기는 CPU 휴면 시간의 증가, 즉 메모리 장벽 문제이다. CPU와 메모리의 속도 차이를 줄이기 위해서는 레지스터, 캐시 메모리, 메인 메모리, 디스크로 대표되는 메모리 계층을 이용하여 자주 쓰이는 데이터를 메모리 계층 상위, 즉 CPU 가까이 위치시켜야 한다. 본 논문에서는 On-Chip SRAM을 이용한 임베디드 시스템 메모리 계층 최적화 기법을 리눅스 기반 시스템에서 최초로 제안한다. 본 기법은 시스템의 가상 메모리를 이용하여 프로그래머가 원하는 코드나 데이터를 On-Chip SRAM에 적재한다. 제안된 기법의 실험 결과 총 9개의 어플리케이션에 대하여 최대 35%, 평균 14%의 시스템 성능 향상과 최대 40% 평균 15%의 에너지 소비 감소를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.