• Title/Summary/Keyword: CPU(Central processing unit)

Search Result 70, Processing Time 0.027 seconds

Kinematic Wave Rainfall-Runoff Model Using CUDA FORTRAN (CUDA FORTRAN을 이용한 운동파 강우유출모형)

  • Kim, Boram;Kim, Dae-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.271-271
    • /
    • 2018
  • 그래픽 처리 장치(GPU: Graphic Processing Units)는 그래픽 처리에 특화된 수많은 산술논리연산자 (ALU: Arithmetic Logic Unit)와 이에 관련된 인스트럭션Instruction)으로 인해 중앙 처리 장치(CPU: Central Processing Units) 보다 훨씬 빠른 계산 처리를 수행할 수 있다. 최근에는 FORTRAN에 의해 구현된 많은 수치모형들이 현실적인 모델링 방법의 발달로 인해 더 많은 계산량과 계산시간을 필요로 한다. 이 연구에서는 GPU 상의 범용 계산GPGPU : General-Purpose computing on Graphics Processing Units) 기반 운동파 강우유출모형(Kinematic Wave Rainfall-Runoff Model)이 CUDA(Compute Unified Device Architecture) FORTRAN을 사용하여 구현되었다. CUDA FORTRAN 운동파 강우유출모형의 계산 결과는 검증된 CPU 기반 운동파 강우유출모형의 계산 결과와 비교하여 검증되었으며, 잘 일치함을 보여 주었다. CUDA FORTRAN 운동파 강우유출모형은 CPU 기반 모형에 비해 약 20 배 더 빠른 계산 시간을 보였다. 또한 계산 영역이 커짐에 따라 CPU 버전에 비해 CUDA FORTRAN 버전의 계산 효율이 향상되었다.

  • PDF

The Design of Parallel Processing S/W Using CUDA for Realtime 3D Laser Ladar Imaging System (실시간 3차원 레이저 레이더 영상 생성을 위한 CUDA 기반 병렬처리 소프트웨어 설계)

  • Cho, Yong Il;Ha, Choong Lim;Yang, Ji Hyeon;Kim, Jae Hyup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In this paper, we propose a CUDA(Common Unified Device Architecture) based SW(software) design method for CPU(Central Processing Unit) and GPU(Graphic Processing Unit) parallel structure to implement real-time process in 3D Laser ladar(LADAR) imaging system. LADAR is a complex system to generate 3-dimensional image based on the laser ranging information, and requires massive process resources in each phase. Therefore, designing and implementing parallel structure are crucial to realize a real-time process within limited system resource. As a conclusion, we can meet the speed of required real-time process allocating separable work load to CUDA GPU by analyzing process algorithm in each phase and confirm the process speed increase by 46%.

Development of GPU-accelerated kinematic wave model using CUDA fortran (CUDA fortran을 이용한 GPU 가속 운동파모형 개발)

  • Kim, Boram;Park, Seonryang;Kim, Dae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.887-894
    • /
    • 2019
  • We proposed a GPU (Grapic Processing Unit) accelerated kinematic wave model for rainfall runoff simulation and tested the accuracy and speed up performance of the proposed model. The governing equations are the kinematic wave equation for surface flow and the Green-Ampt model for infiltration. The kinematic wave equations were discretized using a finite volume method and CUDA fortran was used to implement the rainfall runoff model. Several numerical tests were conducted. The computed results of the GPU accelerated kinematic wave model were compared with several measured and other numerical results and reasonable agreements were observed from the comparisons. The speed up performance of the GPU accelerated model increased as the number of grids increased, achieving a maximum speed up of approximately 450 times compared to a CPU (Central Processing Unit) version, at least for the tested computing resources.

Parallel Processing of Satellite Images using CUDA Library: Focused on NDVI Calculation (CUDA 라이브러리를 이용한 위성영상 병렬처리 : NDVI 연산을 중심으로)

  • LEE, Kang-Hun;JO, Myung-Hee;LEE, Won-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.29-42
    • /
    • 2016
  • Remote sensing allows acquisition of information across a large area without contacting objects, and has thus been rapidly developed by application to different areas. Thus, with the development of remote sensing, satellites are able to rapidly advance in terms of their image resolution. As a result, satellites that use remote sensing have been applied to conduct research across many areas of the world. However, while research on remote sensing is being implemented across various areas, research on data processing is presently insufficient; that is, as satellite resources are further developed, data processing continues to lag behind. Accordingly, this paper discusses plans to maximize the performance of satellite image processing by utilizing the CUDA(Compute Unified Device Architecture) Library of NVIDIA, a parallel processing technique. The discussion in this paper proceeds as follows. First, standard KOMPSAT(Korea Multi-Purpose Satellite) images of various sizes are subdivided into five types. NDVI(Normalized Difference Vegetation Index) is implemented to the subdivided images. Next, ArcMap and the two techniques, each based on CPU or GPU, are used to implement NDVI. The histograms of each image are then compared after each implementation to analyze the different processing speeds when using CPU and GPU. The results indicate that both the CPU version and GPU version images are equal with the ArcMap images, and after the histogram comparison, the NDVI code was correctly implemented. In terms of the processing speed, GPU showed 5 times faster results than CPU. Accordingly, this research shows that a parallel processing technique using CUDA Library can enhance the data processing speed of satellites images, and that this data processing benefits from multiple advanced remote sensing techniques as compared to a simple pixel computation like NDVI.

Stability evaluation of a proportional valve controller for forward-reverse power shuttle control of agricultural tractors

  • Jeon, Hyeon-Ho;Kim, Taek-Jin;Kim, Wan-Soo;Kim, Yeon-Soo;Choi, Chang-Hyun;Kim, Yong-Hyeon;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.597-606
    • /
    • 2021
  • Due to the characteristics of the farmland in Korea, forward and reverse shift is the most used. The fatigue of farmers is caused by forward and reverse shifting with a manual transmission. Therefore, it is necessary to improve the convenience of forward and backward shifting. This study was a basic study on the development of a current control system for forward and reverse shifting of agricultural tractors using proportional control valves and a controller. A test bench was fabricated to evaluate the current control accuracy of the control system, and the stability of the controller was evaluated through CPU (central processing unit) load measurements. A controller was selected to evaluate the stability of the proportional valve controller. The stability evaluation was performed by comparing and analyzing the command current of the controller and the actual current measured. The command current was measured using a CAN (controller area network) communication device and DAQ (data acquisition). The actual current was measured with a current probe and an oscilloscope. The control system and stability evaluation was performed by measuring the CPU load on the controller during control operations. The average load factor was 12.27%, and when 5 tasks were applied, it was shown to be 70.65%. This figure was lower than the CPU limit of 74.34%, when 5 tasks were applied and was judged to be a stable system.

A Study on a Declines in Performance by Memory Copy in CUDA (CUDA의 메모리 복사로 인한 성능 저하 연구)

  • Kang, Jihun;Lee, DaeWon;Kang, InSung;Yu, HeonChang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.135-138
    • /
    • 2013
  • GPGPU(General Purpose Graphics Processing Unit) 병렬처리 시스템인 CUDA(Compute Unified Device Architecture)는 컴퓨터에서의 고속 연산 처리를 위해 많이 사용되어왔다. CUDA에서 연산 처리를 하기 위해서는 CUDA의 특성을 이해해야 한다. CUDA는 CPU(Central Processing Unit)가 처리하는 Host 영역과 GPU(Graphics Processing Unit)가 처리하는 영역인 Device 영역이 존재하며, 이 두 영역간의 데이터 복사를 통해 연산 처리를 진행한다. 이런 구조적인 특성상 메인 메모리에서 GPU 메모리로 입력 데이터를 전달해야 GPU를 이용해 연산을 처리할 수 있는 구조를 가지고 있다. 하지만 이러한 처리 구조로 인해 연산 시간과 별도로 메인 메모리와 GPU 메모리간의 데이터 복사시간이 존재하며, 추가적으로 발생하는 메모리 복사 시간으로 인해 오버헤드가 발생하게 된다. 본 논문에서는 실험을 통해 메모리 복사 시간, 연산의 반복 횟수 그리고 연산의 복잡성이 전체 성능에 어떤 영향을 미치는지 논하고자 한다.

Mondex Electronic Cash

  • Kim, Do-Hyung
    • Proceedings of the CALSEC Conference
    • /
    • 2002.01a
    • /
    • pp.233-237
    • /
    • 2002
  • The smartcard is a processing platform & a store or data it can perform calculations and run programs It contains its own memory (RAM), storage (ROM and EEPROM). and (Central Processing Unit) CPU like a PC If it had its own power supply. keyboard and screen. it would be a fully independent computer Requires an Interface Device (IFD) to supply the power and provide suitable input and display mechanisms. Some examples of IFDs are: point of sale terminal(POS) telephone ATM etc.(omitted)

  • PDF

Parallelized Particle Swarm Optimization with GPU for Real-Time Ballistic Target Tracking (실시간 탄도 궤적 목표물 추적을 위한 GPU 기반 병렬적 입자군집최적화 기법)

  • Yunho, Han;Heoncheol, Lee;Hyeokhoon, Gwon;Wonseok, Choi;Bora, Jeong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.6
    • /
    • pp.355-365
    • /
    • 2022
  • This paper addresses the problem of real-time tracking a high-speed ballistic target. Particle filters can be considered to overcome the nonlinearity in motion and measurement models in the ballistic target. However, it is difficult to apply particle filters to real-time systems because particle filters generally require much computation time. This paper proposes an accelerated particle filter using graphics processing unit (GPU) for real-time ballistic target tracking. The real-time performance of the proposed method was tested and analyzed on a widely-used embedded system. The comparison results with the conventional particle filter on CPU (central processing unit) showed that the proposed method improved the real-time performance by reducing computation time significantly.

New GPU computing algorithm for wind load uncertainty analysis on high-rise systems

  • Wei, Cui;Luca, Caracoglia
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.461-487
    • /
    • 2015
  • In recent years, the Graphics Processing Unit (GPU) has become a competitive computing technology in comparison with the standard Central Processing Unit (CPU) technology due to reduced unit cost, energy and computing time. This paper describes the derivation and implementation of GPU-based algorithms for the analysis of wind loading uncertainty on high-rise systems, in line with the research field of probability-based wind engineering. The study begins by presenting an application of the GPU technology to basic linear algebra problems to demonstrate advantages and limitations. Subsequently, Monte-Carlo integration and synthetic generation of wind turbulence are examined. Finally, the GPU architecture is used for the dynamic analysis of three high-rise structural systems under uncertain wind loads. In the first example the fragility analysis of a single degree-of-freedom structure is illustrated. Since fragility analysis employs sampling-based Monte Carlo simulation, it is feasible to distribute the evaluation of different random parameters among different GPU threads and to compute the results in parallel. In the second case the fragility analysis is carried out on a continuum structure, i.e., a tall building, in which double integration is required to evaluate the generalized turbulent wind load and the dynamic response in the frequency domain. The third example examines the computation of the generalized coupled wind load and response on a tall building in both along-wind and cross-wind directions. It is concluded that the GPU can perform computational tasks on average 10 times faster than the CPU.

A Study on GPU-based Iterative ML-EM Reconstruction Algorithm for Emission Computed Tomographic Imaging Systems (방출단층촬영 시스템을 위한 GPU 기반 반복적 기댓값 최대화 재구성 알고리즘 연구)

  • Ha, Woo-Seok;Kim, Soo-Mee;Park, Min-Jae;Lee, Dong-Soo;Lee, Jae-Sung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.459-467
    • /
    • 2009
  • Purpose: The maximum likelihood-expectation maximization (ML-EM) is the statistical reconstruction algorithm derived from probabilistic model of the emission and detection processes. Although the ML-EM has many advantages in accuracy and utility, the use of the ML-EM is limited due to the computational burden of iterating processing on a CPU (central processing unit). In this study, we developed a parallel computing technique on GPU (graphic processing unit) for ML-EM algorithm. Materials and Methods: Using Geforce 9800 GTX+ graphic card and CUDA (compute unified device architecture) the projection and backprojection in ML-EM algorithm were parallelized by NVIDIA's technology. The time delay on computations for projection, errors between measured and estimated data and backprojection in an iteration were measured. Total time included the latency in data transmission between RAM and GPU memory. Results: The total computation time of the CPU- and GPU-based ML-EM with 32 iterations were 3.83 and 0.26 see, respectively. In this case, the computing speed was improved about 15 times on GPU. When the number of iterations increased into 1024, the CPU- and GPU-based computing took totally 18 min and 8 see, respectively. The improvement was about 135 times and was caused by delay on CPU-based computing after certain iterations. On the other hand, the GPU-based computation provided very small variation on time delay per iteration due to use of shared memory. Conclusion: The GPU-based parallel computation for ML-EM improved significantly the computing speed and stability. The developed GPU-based ML-EM algorithm could be easily modified for some other imaging geometries.