• Title/Summary/Keyword: CPT(Cross-flow power turbine)

Search Result 3, Processing Time 0.017 seconds

A Numerical Study on Solidity Characteristics of the Cross-flow Power Turbine(CPT) (횡류형 파워 터빈(CPT)에서 솔리디티 영향에 관한 수치해석 연구)

  • Chung, Kwang-Seop;Kim, Chul-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.562-566
    • /
    • 2010
  • Wind energy is one of the most general natural resources in the world. However, as of today, generating electricity out of wind energy is only available from big wind generator, Furthermore, an axial-flow turbine is the only way to produce electricity in the big wind generator. This paper is for the guidance of drawing impact fact about power turbine using cross-flow type transferring wind energy to electricity energy. It will find the ideal value which enables to make cross-flow power turbine(CPT) using computational fluid dynamics(CFD) code. This study tries to analyze the "Solidity" characteristics. We can find out turbine-blade number through CFD. CFD is using "Fluent_ver 6.3.16", and the data from its result will judge fan-blade performance through specific torque and specific power from each "Solidity" model. Based upon the above, we will make cross-flow power turbine of multi-blade centrifugal fan instead of axial-flow type.

A Numerical Study on an Optimum Design of a Cross-flow Type Power Turbine (CPT) (횡류형 파워터빈의 최적화 설계에 관한 수치해석 연구)

  • Ha, Jin-Ho;Kim, H.C.;Kim, Chul-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3050-3055
    • /
    • 2007
  • A wind turbine is one of the most popular energy conversion systems to generate electricity from the natural renewable energy source and an axial-flow type wind turbine is the most popular system for the electricity generation in the wind farm nowadays. In this study, a cross-flow type turbine has been studied for the application of wind turbine for electricity generation. The target capacity of electric power generation of the model wind turbine developing on the project is 12 volts, 130A/H (about 1.56kW). The important design parameters of the model turbine impeller are the inlet and exit angle of the turbine blade, number of blade, hub/tip ratio and the exit flow angle of the casing. In this study, the radial equilibrium theorem was used to decide the inlet and exit angle of the impller blade and CFD technique was used to have the performance analysis of the designed model power turbine to find out the optimum geometry of the CPT impeller and casing. The designed CPT with 24 impeller blades at ${\alpha}=82^{\circ}$, ${\beta}=40^{\circ}$ of turbine blade angle was estimated to generate 284.6 N.m of indicated torque and 2.14kW of indicated power.

  • PDF

Development of a Cross-flow Type Vertical Wind Power Generation System for Electric Energy Generation Using Convergent-Divergent Duct (축소-확대 유로에 적용한 횡류형 수직 풍력발전시스템의 개발)

  • Chung, Sang-Hoon;Chung, Kwang-Seop;Kim, Chul-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.543-548
    • /
    • 2011
  • New concept of wind energy conversion system is proposed to increase the energy density at a given working space. The quality of wind for wind power generation is depend on its direction and speed. However, the quality is not good on land because wind direction is changeable all the time and the speed as well. The most popularly operated wind turbine system is an axial-flow free turbine. But its conversion efficiency is less than 30% and even less than 20% considering the operating time. In this research, a cross-flow type wind turbine system is proposed with a convergent-divergent duct system to accelerate the low speed wind at the inlet of the wind turbine. Inlet guide vane is also introduced to the wind turbine system to have continuous power generation under the change of wind direction. In here, the availability of wind energy generation is evaluated with the change of the size of the inlet guide vane and the optimum geometry of the turbine impeller blade was found for the innovative wind power generation system.