• 제목/요약/키워드: CP-EAPap

검색결과 2건 처리시간 0.019초

CP-EAPap 생체모방 작동기의 제조 및 성능 (CP-EAPap biomimetic actuator fabrication and performance)

  • 이곡파;김재환;데시판데
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.360-363
    • /
    • 2005
  • Biomimetic actuators composed of cellophane with an electrically conducting polyaniline(PANI) film have been fabricated and tested in air ambience conditions doped with two different counter ions such as perchlorate (${ClO_4}^-$) and tetrafluoroborate (${BF_4}^-$). Fabrication of the trilayer CP//CELLOPHANE//CP substantially enhanced the tip displacement (13.2mm) compared to the small displacement (8.3mm) of the bilaye. CP//CELLOPHANE. The ion migration among layers is the main factor behind the expansion of cellophane, while the expansion/contraction of PANI are dependent on the redox reaction of the polymer. The displacement of the composite is dominated by the humidity content. This implies that the actuation principle is possibly due to the assistance of water existing.

  • PDF

폴리아닐린이 코팅된 Electro-Active Paper 작동기 성능평가 (Performance Characterization of Polyaniline Coated Electro-Active Paper Actuator)

  • 고현우;문성철;적림동;김기백;김재환
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.658-664
    • /
    • 2013
  • Bending actuators composed of cellulose with an electrically conducting polymer (CP) are fabricated and their performance is characterized in the air. Two different counter ions, perchlorate and tetrafluoroborate are used as dopant ions in the polyaniline CP processing. CP-cellulose-CP trilayer and CP-cellulose bilayer samples are fabricated with different dopant ions, and their actuation performance is evaluated in terms of tip displacement, blocked force and electrical power consumption along with the humidity level and actuation frequency. The trilayer samples substantially enhanced the tip displacement compared to the bilayer ones. The actuation performance of the trilayer actuator is three times better than that of original cellulose electro-active paper (EAPap) actuator. The displacement and blocked force of CP-EAPap actuators are dependent on the humidity and frequency.