• Title/Summary/Keyword: COVID-19 forecasting

Search Result 47, Processing Time 0.021 seconds

Forecasting LNG Freight rate with Artificial Neural Networks

  • Lim, Sangseop;Ahn, Young-Joong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.187-194
    • /
    • 2022
  • LNG is known as the transitional energy source for the future eco-friendly, attracting enormous market attention due to global eco-friendly regulations, Covid-19 Pandemic, Russia-Ukraine War. In addition, since new LNG suppliers such as the U.S. and Australia are also diversifying, the LNG spot market is expected to grow. On the other hand, research on the LNG transportation market has been marginalized. Therefore, this study attempted to predict short-term LNG 160K spot rates and compared the prediction performance between artificial neural networks and the ARIMA model. As a result of this paper, while it was difficult to determine the superiority and superiority of ARIMA and artificial neural networks, considering the relative free of ANN's contraints, we confirmed the feasibility of ANN in LNG 160K spot rate prediction. This study has academic significance as the first attempt to apply an artificial neural network to forecasting LNG 160K spot rates and are expected to contribute significantly in practice in that they can improve the quality of short-term investment decisions by market participants by increasing the accuracy of short-term prediction.

The Impact of Pandemic Crises on the Synchronization of the World Capital Markets (팬데믹 위기가 세계 자본시장 동조화에 미치는 영향)

  • Lee, Dong Soo;Won, Chaehwan
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.3
    • /
    • pp.183-208
    • /
    • 2022
  • Purpose - The main purpose of this study is to widely investigate the impact of recent pandemic crises on the synchronization of the world capital markets through 25 stock indices from major developed countries. Design/methodology/approach - This study collects 25 stock indices from major developed countries and the time period is between January 5, 2001 and February 24, 2022. The data sets used in the study include finance.yahoo.com and Investing.com.. The Granger causality analysis, unit-root test, VAR analysis, and forecasting error variance decomposition were hired in order to analyze the data. Findings - First, there are significant inter-relations among 25 countries around recent major pandemic crises(such as SARS, A(H1N1), MERS, and COVID19), which is consistent result with previous literature. Second, COVID19 shows much stronger impact on the world-wide synchronization than other pandemics. Third, the return volatility of each stock market varies, unit root tests show that daily stock index data are unstable while daily stock index returns are stable, and VAR(Vector Auto Regression) analyses presents significant inter-relations among 25 capital markets. Fourth, from the impulse response function analyses, we find that each market affects the other markets for short term periods, about 2~4 days, and no long term effect was not found. Fifth, Granger causality tests show one-side or two-sides synchronization between capital markets and we estimate, through forecasting error variance decomposition method, that the explanatory portions of each capital market on other markets vary from 10 to 80%. Research implications or Originality - The above results all together show that pandemic crises have strong effects on the synchronization of world capital markets and imply that these synchronizations should be carefully considered both in the investment decisions by individual investors and in the financial and economic policies by governments.

Demand Forecast For Empty Containers Using MLP (MLP를 이용한 공컨테이너 수요예측)

  • DongYun Kim;SunHo Bang;Jiyoung Jang;KwangSup Shin
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.85-98
    • /
    • 2021
  • The pandemic of COVID-19 further promoted the imbalance in the volume of imports and exports among countries using containers, which worsened the shortage of empty containers. Since it is important to secure as many empty containers as the appropriate demand for stable and efficient port operation, measures to predict demand for empty containers using various techniques have been studied so far. However, it was based on long-term forecasts on a monthly or annual basis rather than demand forecasts that could be used directly by ports and shipping companies. In this study, a daily and weekly prediction method using an actual artificial neural network is presented. In details, the demand forecasting model has been developed using multi-layer perceptron and multiple linear regression model. In order to overcome the limitation from the lack of data, it was manipulated considering the business process between the loaded container and empty container, which the fully-loaded container is converted to the empty container. From the result of numerical experiment, it has been developed the practically applicable forecasting model, even though it could not show the perfect accuracy.

Factors Affecting Income from Public Agricultural Land Use: An Empirical Study from Vietnam

  • PHAM, Phuong Nam;TRAN, Thai Yen
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.6
    • /
    • pp.1-9
    • /
    • 2022
  • The study aims to determine the factors and their influence on the income from using public agricultural land of households. Public agricultural land is agricultural land, including land for growing annual crops, perennial crops, and land for aquaculture, leased by commune-level People's Committees with a lease term of not more than 5 years. Secondary data were collected for the 2017-2021 period at state agencies. Primary data were collected from a survey of 150 households renting public agricultural land. The regression model assumed that there were 28 factors belonging to 7 groups. The test results show that 25 factors affect income, and 03 factors do not. The group of COVID-19 pandemic factors has the strongest impact, followed by the groups of agricultural product market factors, land factors, capital factors, production cost factors, labor factors, and climatic factors. The impact rate of COVID-19 pandemic factors is the largest (23.00%); The impact rate of climatic factors is the smallest (6.04%). Proposals to increase income include good implementation of disease prevention and control; increasing the land lease term; accurately forecasting the supply and demand of the agricultural market; raising the level of the household head; ensuring sufficient production capital, and adapting to the climate.

Estimating the Growth Rate of Inbound Air Travelers to Jeju with ARIMA Time-Series - Using Golf Course Visitor Data - (ARIMA 시계열 모형을 이용한 제주도 인바운드 항공여객 증가율 예측 연구 - 제주지역 골프장 내장객 현황 데이터를 활용하여 -)

  • Gun-Hee Sohn;Kee-Woong Kim;Ri-Hyun Shin;Su-Mi Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.1
    • /
    • pp.92-98
    • /
    • 2023
  • This paper used the golf course visitors' data in Jeju region to forecast the growth of inbound air traveler to Jeju. This is because the golf course visitors were proven to bring the highest economic and production inducement effect to the Jeju region. Based on such a data, this paper forecast the short-term growth rate of inbound air traveler using ARIMA to the Jeju until December 2025. According to ARIMA (0,1,0) (0,1,1) model, it was analyzed that the monthly number of golf course visitors to Jeju has been increasing steadily even since COVID-19 pandemic and the number is expected to grow until the end of 2025. Applying the same parameters of ARIMA (0,1,0) (0,1,1) to inbound air travel data, it was found the growth rate of inbound air travelers would be higher than the growth rate of 2019 shortly without moderate variation even though the monthly number of inbound travelers to Jeju had been dropped during COVID-19 pandemic.

Forecasting non-traditional security threats in Korea :by Republic of Korea Army collective intelligence platform operating result (미래 한반도의 비전통적 안보위협 예측 :육군의 집단지성 플랫폼 운영 결과를 중심으로)

  • Cho, Sang Keun;Jung, Min-Sub;Moon, Sang Jun;Park, Sang-Hyuk
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.216-222
    • /
    • 2021
  • COVID-19 pandemic brings attentions to the nonmilitary and transnational non-traditonal security threats, as the scales of such damage by these threats are beyond expectation. The Republic of Korea Army tries to forecast non-traditional security threat which may be occurred in Korean peninsula by using collective intelligence platform. In coming years, climate change, social changes and technology development caused by the 4th industrial revolution will diversify non-traditional security threat. Considering urbanization, internet distribution rate, and geopolitical location where atmosphere from continent and ocean meet, Korea would may face the most lethal ones compared to those of other countries may face. Therefore, to predict such threats in pangovernment scale using collective intelligence platforms which embrace civil, public, military, industry, academy and research center is the most important than anything.

Real-time private consumption prediction using big data (빅데이터를 이용한 실시간 민간소비 예측)

  • Seung Jun Shin;Beomseok Seo
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.1
    • /
    • pp.13-38
    • /
    • 2024
  • As economic uncertainties have increased recently due to COVID-19, there is a growing need to quickly grasp private consumption trends that directly reflect the economic situation of private economic entities. This study proposes a method of estimating private consumption in real-time by comprehensively utilizing big data as well as existing macroeconomic indicators. In particular, it is intended to improve the accuracy of private consumption estimation by comparing and analyzing various machine learning methods that are capable of fitting ultra-high-dimensional big data. As a result of the empirical analysis, it has been demonstrated that when the number of covariates including big data is large, variables can be selected in advance and used for model fit to improve private consumption prediction performance. In addition, as the inclusion of big data greatly improves the predictive performance of private consumption after COVID-19, the benefit of big data that reflects new information in a timely manner has been shown to increase when economic uncertainty is high.

The Effect of the Reduction in the Interest Rate Due to COVID-19 on the Transaction Prices and the Rental Prices of the House

  • KIM, Ju-Hwan;LEE, Sang-Ho
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.8
    • /
    • pp.31-38
    • /
    • 2020
  • Purpose: This study uses 'Autoregressive Integrated Moving Average Model' to predict the impact of a sharp drop in the base rate due to COVID-19 at the present time when government policies for stabilizing house prices are in progress. The purpose of this study is to predict implications for the direction of the government's house policy by predicting changes in house transaction prices and house rental prices after a sharp cut in the base rate. Research design, data, and methodology: The ARIMA intervention model can build a model without additional information with just one time series. Therefore, it is a time-series analysis method frequently used for short-term prediction. After the subprime mortgage, which had shocked since the global financial crisis in April 2007, the bank's interest rate in 2020 is set at a time point close to zero at 0.75%. After that, the model was estimated using the interest rate fluctuations for the Bank of Korea base interest rate, the house transaction price index, and the house rental price index as event variables. Results: In predicting the change in house transaction price due to interest rate intervention, the house transaction price index due to the fall in interest rates was predicted to change after 3 months. As a result, it was 102.47 in April 2020, 102.87 in May 2020, and 103.21 in June 2020. It was expected to rise in the short term. In forecasting the change in house rental price due to interest rate intervention, the house rental price index due to the drop in interest rate was predicted to change after 3 months. As a result, it was 97.76 in April 2020, 97.85 in May 2020, and 97.97 in June 2020. It was expected to rise in the short term. Conclusions: If low interest rates continue to stimulate the contracted economy caused by COVID-19, it seems that there is ample room for house transaction and rental prices to rise amid low growth. Therefore, In order to stabilize the house price due to the low interest rate situation, it is considered that additional measures are needed to suppress speculative demand.

Effective Capacity Planning of Capital Market IT System: Reflecting Sentiment Index (자본시장 IT시스템 효율적 용량계획 모델: 심리지수 활용을 중심으로)

  • Lee, Kukhyung;Kim, Miyea;Park, Jaeyoung;Kim, Beomsoo
    • Knowledge Management Research
    • /
    • v.23 no.1
    • /
    • pp.89-109
    • /
    • 2022
  • Due to COVID-19 and soaring participation of individual investors, large-scale transactions exceeding system capacity limits have been reported frequently in the capital market. The capital market IT systems, which the impact of system failure is very critical, have encountered unexpectedly tremendous transactions in 2020, resulting in a sharp increase in system failures. Despite the fact that many companies maintained large-scale system capacity planning policies, recent transaction influx suggests that a new approach to capacity planning is required. Therefore, this study developed capital market IT system capacity planning models using machine learning techniques and analyzed those performances. In addition, the performance of the best proposed model was improved by using sentiment index that can promptly reflect the behavior of investors. The model uses empirical data including the COVID-19 period, and has high performance and stability that can be used in practice. In practical significance, this study maximizes the cost-efficiency of a company, but also presents optimal parameters in consideration of the practical constraints involved in changing the system. Additionally, by proving that the sentiment index can be used as a major variable in system capacity planning, it shows that the sentiment index can be actively used for various other forecasting demands.

Analysis of the Long-Range Transport Contribution to PM10 in Korea Based on the Variations of Anthropogenic Emissions in East Asia using WRF-Chem (WRF-Chem 모델을 활용한 동아시아의 인위적 배출량 변동에 따른 한국 미세 먼지 장거리 수송 기여도 분석)

  • Lee, Hyae-Jin;Cho, Jae-Hee
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.283-302
    • /
    • 2022
  • Despite the nationwide COVID-19 lockdown in China since January 23, 2020, haze days with high PM10 levels of 88-98 ㎍ m-3 occurred on February 1 and 2, 2020. During these haze days, the East Asian region was affected by a warm and stagnant air mass with positive air temperature anomalies and negative zonal wind anomalies at 850 hPa. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was used to analyze the variation of regional PM10 aerosol transport in Korea due to decreased anthropogenic emissions in East Asia. The base experiment (BASE), which applies the basic anthropogenic emissions in the WRF-Chem model, and the control experiment (CTL) applied by reducing the anthropogenic emission to 50%, were used to assess uncertainty with ground-based PM10 measurements in Korea. The index of agreement (IOA) for the CTL simulation was 0.71, which was higher than that of BASE (0.67). A statistical analysis of the results suggests that anthropogenic emissions were reduced during the COVID-19 lockdown period in China. Furthermore, BASE and CTL applied to zero-out anthropogenic emissions outside Korea (BASE_ZEOK and CTL_ZEOK) were used to analyze the variations of regional PM10 aerosol transport in Korea. Regional PM10 transport in CTL was reduced by only 10-20% compared to BASE. Synthetic weather variables may be another reason for the non-linear response to changes in the contribution of regional transport to PM10 in Korea with the reduction of anthropogenic emissions in East Asia. Although the regional transport contribution of other inorganic aerosols was high in CTL (80-90%), sulfate-nitrate-ammonium (SNA) aerosols showed lower contributions of 0-20%, 30-60%, and 30-60%, respectively. The SNA secondary aerosols, particularly nitrates, presumably declined as the Chinese lockdown induced traffic.