• 제목/요약/키워드: COS Fuse

검색결과 12건 처리시간 0.015초

COS LoRa 기반의 임베디드 시스템 설계 (Embedded System Design with COS LoRa technology)

  • 홍선학;조경순;윤진섭
    • 디지털산업정보학회논문지
    • /
    • 제14권3호
    • /
    • pp.29-38
    • /
    • 2018
  • It is the approach of embedded system design that analyzes COS(Cut Out Switch) failure in the power distribution and an instantaneous breakdown of power distribution supply could cause the weakness of industrial competence and therefore we need to feed the stable power distribution with developing the technology of open-source embedded system. In this paper, we apply the LoRa technology which is the Internet of Things(IoT) protocol for low data rate, low power, low cost and long range sensor applications. We designed the hardware and software architecture setup and experimented the embedded system with network architecture and COS monitoring system including accelerometer for detecting the failure of distribution line and sensing the failure of its fuse holder by recognizing the variation and collision and afterwards sending the information to a gateway. With experimenting we designed the embedded platform for sensing the variation and collision according to the COS failure, monitoring its fuse holder status and transferring the information of states with LoRa technology.

흡음장치를 내장한 고전압 퓨즈홀더의 최적설계에 관한 연구 (Optimum Design of High Voltage Fuse Holder with a Built-in Acoustic Absorber System)

  • 진영준;이해원;황유섭
    • 한국안전학회지
    • /
    • 제26권1호
    • /
    • pp.8-14
    • /
    • 2011
  • Noise and vibration are likely to disturb the sensory system of human body leading to psychological stress and thereby property damage. In this research, a cut out switch(COS) with a built-in acoustic absorber along with a COS fuse broken was developed to reduce percussion noise. This new system is based on a design approach that combines existing absorber systems: expansion type, resonator type, and acoustic absorber type silencer The noise performance of the new system was simulated using the $SYSNOISE^{TM}$ software under optimized parameters: the diameter of perforated plate 2 mm, the plate thickness 3 mm, the width of expansion room 25 mm, the impinging vortex room 14 mm, and the noise absorbtion room 10 mm. The results showed that it reduced noise by approximately 41.1 dB compared to the current systems available in the market. Furthermore, it showed reduced noise by approximately 12 dB more than a product with an acoustic absorber of the Fault Tamer(USA).