• Title/Summary/Keyword: COPc

Search Result 3, Processing Time 0.015 seconds

프탈로시아닌계 안료를 이용한 TO-14의 흡착능력평가

  • Lee, Jeong-Se;Seo, Jeong-Ho;Lee, Hak-Seong
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.05a
    • /
    • pp.141-143
    • /
    • 2006
  • Carboxylic phthalocyanine합성물을 분석한 결과 Copc의 Co가 3.06Wt.(%)에서 Cooapc가 0.28Wt.(%)로 나타난 것으로 보아 carboxylic group이 증가한 것을 알 수 있었으머, Fepc도 같은 결과로 나타났다. 휘발성유기화합물의 제거효율을 분석한 결과 극성이 높은 물질은 쉽게 흡착 되었으며 일부 제거가 되지 않은 물질은 Fig.3, Fig.4에서 보는바와 같이 Feoapc보다는 Cooapc가 제거효율이 높은 것으로 나타났다.

  • PDF

ISO performance data based commissioning technique for GSHP system (ISO 성능데이터를 이용한 지열히트펌프 시스템의 성능 확인 커미셔닝 기술)

  • Ko, Gun-Hyuk;Kim, Ji-Young;Kang, Eun-Chul;Chang, Ki-Chang;Lee, Euy-Joon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.4 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • GSHP(Ground Source Heat Pump) has been extensively disseminated due to the recent increasing demand over new and renewable energy. However, the system reliability has been key issues and barriers to insure a better system performance as designed originally in ISO (international standard organization) standard. This paper introduces a systematic method to verify its intended design target so called as ISO performance data based commissioning technology for a water to air GSHP system. The commissioning technology starts from are to the international standard ISO performance data of a GSHP model and to compare its installed operation data and to calibrate and tune to the target optimum operation parameters. Results indicated that cooling capacity could be raised up to 76.6% from 46.6% from this proposed commissioning technology.

  • PDF

Seasonal Variations of EWT and COP of GWHP System Using the Bank Infilterated Water from Stream-Alluvial Aquifer System (하천-충적대수층계의 강변여과수를 열원으로 이용하는 지하수 열펌프 시스템의 계절별 입구온도와 효율성 평가)

  • Hahn, Chan;Jeon, Jae-Soo;Yoon, Yoon-Sang;Han, Hyok-Sang;Hahn, Jeong-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.2
    • /
    • pp.39-51
    • /
    • 2007
  • Unconsolidated and permeable alluvial deposit composed of sand and gravel is distributed along the fluvial plain at the Iryong study area. Previous studies on the area show that a single alluvial well can produce at least 1,650m3d-1 of bank infilterated shallow groundwater(BIGW) from the deposit. This study is aimed to evaluate and simulate the influence that seasonal variation of water levels and temperatures of the river have an effect on those of BIGW under the pumping condition and also to compare seasonal variation of COPs when indirectly pumped BIGW or directly pumped surface water are used for a water to water heat pump system as an heat source and sink using 3 D flow and heat transport model of Feflow. The result shows that the magnitude influenced to water level of BIGW by fluctuation of river water level in summer and winter is about 48% and 75% of Nakdong river water level separately. Seasonal change of river water temperature is about $23.7^{\circ}C$, on other hand that of BIGW is only $3.8^{\circ}C$. The seasonal temperatures of BIGW are ranged from minimum $14.5^{\circ}C$ in cold winter(January) and maximum $18.3^{\circ}C$ in hot summer(July). It stands for that BIGW is a good source of heat energy for heating and cooling system owing to maintaining quite similar temperature($16^{\circ}C$) of background shallow groundwater. Average COPh in winter time and COPc in summer time of BIGW and surface water are estimated about 3.95, 3.5, and about 6.16 and 4.81 respectively. It clearly indicates that coefficient of performance of heat pump system using BIGW are higher than 12.9% in winter time and 28.1% in summer time in comparision with those of surface water.

  • PDF