• 제목/요약/키워드: COP(Coefficient of Performance)

검색결과 225건 처리시간 0.026초

사계절 외기 전용 공조기에 대한 실험적 연구 (An Experimental Study on Four-season Dedicated Outdoor Air Handling Unit)

  • 박승태;김종천;홍영주;김영일
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.577-582
    • /
    • 2008
  • The present study has been conducted to study the performance of Dedicated outdoor air handling unit. Dedicated outdoor air handling unit consists of pre-cooler, dehumidification and after cooler. By combining dedicated outdoor air-conditioning and heat pump, a new four-season dedicated outdoor air handling unit has been developed. Amount of energy saved and condition when this new system is superior to conventional vapor-compression cooling system has been presented.

  • PDF

가변속 냉동시스템의 비간섭제어를 위한 실험적 모델 (An Empirical Model for Decoupling Control of a Variable Speed Refrigeration System)

  • ;정석권
    • 동력기계공학회지
    • /
    • 제10권3호
    • /
    • pp.81-87
    • /
    • 2006
  • This paper deals with an empirical model for decoupling control to control the refrigeration system effectively. The conventional control schemes of the system are mainly focused on representative two control methods, superheat control and capacity control. The capacity control is basically conducted to respond partial loading conditions on the purpose of energy saving. The superheat control is mainly carried out to maintain maximum coefficient of performance (COP). In the variable speed refrigeration system, the capacity and the superheat are controlled by inverters and electronic expansion valves respectively for saving energy and improving cost performance. The capacity and superheat can not be controlled independently because of interfering loop when the compressor speed and opening angle electronic expansion valve is varied. Therefore, we suggest decoupling model to eliminate the interfering loop at first. Next, each transfer function in decoupling control model is obtained from number of experiments.

  • PDF

열전박막을 이용한 마이크로 냉각소자 제작 (Fabrication of a Micro Cooler using Thermoelectric Thin Film)

  • 한승우;최현주;김병일;김병민;김동호;김욱중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1459-1462
    • /
    • 2007
  • In general a thermoelectric cooler (TEC) consists of a series of P type and N type thermoelectric materials sandwiched between two wafers. When a DC current passes through these materials, three different effects take place; Peltier effect, Joule heating effect and heat transfer by conduction due to temperature difference between hot and cold plates. In this study we have developed a micro TEC using $Bi_2Te_3$ (N type) and $Bi_{0.5}Sb_{1.5}Te_3$ (P type) thin films. In order to improve that performance of a micro TEC, we made 10 um height TE legs using special PR only for lift-off. We measured COP (coefficient of performance) and temperature difference between hot and cold connectors with current.

  • PDF

상용차 하이브리드 냉방시스템 냉방 성능 특성 연구 (Experimental study on cooling performance characteristics of hybrid refrigeration system in a heavy duty vehicle)

  • 이호성;전한별;김정일;이무연
    • 한국산학기술학회논문지
    • /
    • 제20권1호
    • /
    • pp.419-425
    • /
    • 2019
  • 본 연구의 목적은 상용차 운행 시, 야간 및 운휴중에 냉방시스템을 운전하기 위하여서, 기계식과 전동식 압축기를 적용한 하이브리드 냉방시스템에 대한 냉방성능 특성을 분석하는 것이다. 기계식압축기는 170cc의 왕복동 형식이고, 전동식 압축기는 18cc 스크롤 형식이다. 전동식 압축기는 운휴시나 야간에 사용할 목적으로 적용되었기 때문에, 냉방용량은 기계식 압축기 대비 낮은 성능을 가지고 있다. 기계식 압축기를 사용하였을 경우, 6.0kW 수준의 냉방성능을 보이고 있고, 시스템 효율은 2.0이하의 결과를 가졌다. 반면, 전동식 압축기는 냉방성능 4.0kW수준, 시스템 효율은 3.5 수준을 가지고 있었다. 본 연구에서는 전동식 압축기는 냉방성능 4.0kW수준, 시스템 효율은 3.5 수준을 가지고 있었다. 기계식 압축기와 전동식 압축기를 운전조건에 따라서, 선택적으로 운전하는 것을 고려하였기 때문에, 운전모드가 바뀔 때의 시스템 특성을 분석하기 위하여서, 운전모드 변경에 대한 영향을 알아보았다. 운전모드가 변경될 때, 토출압력이 일시적으로 증가하는 경향을 보이는데, 안정적인 운전을 위하여서, 외기 부하 등을 고려한 운전모드 변경 로직에 대한 연구가 필요할 것으로 판단된다.

가변속 이산화탄소 열펌프의 난방성능 특성에 관한 실험적 연구 (Experimental Study on the Heating Performance of a Variable Speed CO2 Heat Pump with a Variation of Operating Conditions)

  • 조홍현;이호성;장용희;김용찬
    • 대한기계학회논문집B
    • /
    • 제31권8호
    • /
    • pp.694-701
    • /
    • 2007
  • The applications of a transcritical $CO_2$ cycle into water heaters show advantages over conventional systems in the respect of power consumption and heating efficiency because the $CO_2$ cycle has a high compressor discharge temperature. Besides, the heating performance of the transcritical $CO_2$ cycle can be improved by optimizing operating conditions. In this study, the heating performance of a variable speed $CO_2$ heat pump was measured and analyzed by varying refrigerant charge amount, EEV opening, compressor frequency and outdoor temperature. As a result, the optimum normalized charge for heating was 0.226. The COPs at the compressor frequencies of 40, 50 and 60 Hz were 2.94, 2.75 and 2.25, respectively. The heating performance of the $CO_2$ cycle with charge amount was more sensitive than the cooling performance. Moreover, the heating performance was improved significantly by optimizing of compressor frequency and EEV opening.

Low GWP 냉매를 적용한 해수열 히트펌프의 성능해석 (The Performance Analysis of Sea Water Heat Pump applied Low GWP Refrigerants)

  • 임승택;김현주;이호생
    • 동력기계공학회지
    • /
    • 제20권5호
    • /
    • pp.92-97
    • /
    • 2016
  • In this study, the seawater Heat Pump System using seawater with temperature of annual domestic conditions ($0^{\circ}C$ to $25^{\circ}C$) is designed in order to compare its performance against the Heat Pump using unused heat of seawater. As a potential replacement for current refrigerants that exacerbate global warming and ozone delpetion, a Low GWP refrigerant's performance is analyzed. The basic water to water Heat Pump system is chosen and three commercial refrigerants - R134a, R410a, R32 - are used to compare against new Low GWP refrigerant R1234ze. When seawater with temperature of $25^{\circ}C$ is used, the performance change showed maximal increase in COP, 38.3%. low GWP refrigerant R1234ze, showed great performance characteristics reach to 5.242 and Existing commercial refrigerant, R134a showed only less than 0.03 performance difference against R1234ze. The study confirms notable performance of R1234ze refrigerant through simulation as environmentally friendly refrigerant for domestic seawater Heat Pump.

하이브리드 지중열교환기 적용 지열 히트펌프 시스템의 난방 성능 분석 (Heating Performance Analysis of Ground-Source Heat Pump (GSHP) System using Hybrid Ground Heat Exchanger (HGHE))

  • 손병후
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권3호
    • /
    • pp.8-16
    • /
    • 2020
  • This paper presents the heating performance analysis results of a ground-source heat pump (GSHP) system using hybrid ground heat exchanger (HGHE). In this paper, the HGHE refers to the ground heat exchanger (GHE) using both a surface water heat exchanger (SWHE) and a vertical GHE. In order to evaluate the system performance, we installed monitoring sensors for measuring temperatures and power consumption, and then measured operation data with 4 different load burdened ratios of the HGHE. During the entire measurement period, the average heating capacity of the heat pump was 37.3 kW. In addition, the compressor of the heat pump consumed 9.4 kW of power, while the circulating pump of the HGHE used 6.7 kW of power. Therefore, the average heating coefficient of performance (COP) for the heat pump unit was 4.0, while the system including the circulating pump was 2.7. Finally, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further researches are needed to optimize the design data for various load ratios of the HGHE.

지열원 열펌프 시스템의 냉${\cdot}$난방 성능 평가 (Cooling and Heating Performance Evaluation of a GSHP System)

  • 손병후;조정식;신현준;안형준
    • 설비공학논문집
    • /
    • 제17권1호
    • /
    • pp.71-81
    • /
    • 2005
  • The main objective of the present study is to investigate the performance characteristics of a ground-source heat pump(GSHP) system with a 130 m vertical and 62 mm nominal diameter U-tube ground heat exchanger. In order to evaluate the performance analysis, the ground-source heat pump connected to a test room with $90\;m^2$ floor area in the Korea Institute of Construction $Technology(37^{\circ}39'N,\;126^{\circ}48'E)$ was designed and constructed. This ground-source heat pump system mainly consisted of ground heat exchanger, indoor heat pumps and measuring devices. The cooling and heating loads of the test room were 5.5 and 7.2 kW at design conditions, respectively. The experimental results were obtained from July 2, 2003 to July 1, 2004. The cooling and heating performance coefficients of the system were determined from the measured data. The average cooling and heating COPs for the system were obtained to be 4.90 and 3.96, respectively. The temperature variations in ground and the ground heat exchanger pipe surface at different depths were also measured.

지열원 열펌프의 냉.난방 성능 평가 (Cooling and Heating Performance Evaluation of a Ground Source Heat Pump)

  • 손병후;조정식;신현준;안형준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2117-2122
    • /
    • 2004
  • The main objective of the present study is to investigate the performance characteristics of a ground source heat pump (GSHP) system with a 130 m vertical 60.5 mm nominal diameter U-bend ground heat exchanger. In order to evaluate the performance analysis, the GSHP system connected to a test room with 90 $m^2$ floor area in the Korea Institute of Construction Technology ($37^{\circ}39'$ N, $126^{\circ}48'$ E) was designed and constructed. This GSHP system mainly consisted of ground heat exchanger, indoor heat pump and measuring devices. The cooling and heating loads of the test room were 5.5 and 7.2 kW at design conditions, respectively. The experimental results were obtained from July to January in cooling and heating season of $2003{\sim}2004$. The cooling and heating performance coefficients of the system were determined from the experimental results. The average cooling and heating COPs for the system were obtained to be 4.82 and 3.02, respectively. The temperature variations in ground and the ground heat exchanger surface at different depths were also measured.

  • PDF

저온용 대체냉매의 성능 특성 연구 (Performance Characteristics Study on an Alternative Refrigerant in Low Temperature Applications)

  • 신정섭;김만회
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.462-469
    • /
    • 2016
  • This paper presents the results of thermodynamic cycle analysis and performance tests of alternative mixtures in low temperature applications. Two near-azeotropic binary mixtures R-152a/R-1270 (35:65 by wt.%) and R-290/E170 (35:65 by wt.%) are considered in this study. They have zero ODP (Ozone Depletion Potential) and much lower GWP (Global Warming Potential) than R-404A which is an alternative of R-502. Refrigeration cycle characteristics such as cooling capacity, coefficient of performance, suction and discharge pressures and temperatures are compared to those for the baseline refrigerants (R-502 and R-404A) cycles. The performance tests are conducted at the evaporation and condensation temperatures of $5^{\circ}C$ and $45^{\circ}C$, subcooling and superheating temperatures of $5^{\circ}C$, respectively. Performance comparisons between baseline and alternative refrigerants are conducted on the same cooling capacity. The system performance of newly proposed refrigerant mixtures show promising results.