• Title/Summary/Keyword: COMS Satellite

Search Result 367, Processing Time 0.023 seconds

DEVELOPMENT OF GOCI/COMS DATA PROCESSING SYSTEM

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Han, Hee-Jeong;Ryu, Joo-Hyung
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.90-93
    • /
    • 2006
  • The first Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meteorological Satellite (COMS) is scheduled for launch in 2008. GOCI includes the eight visible-to-near-infrared (NIR) bands, 0.5km pixel resolution, and a coverage region of 2500 ${\times}$ 2500km centered at 36N and 130E. GOCI has had the scope of its objectives broadened to understand the role of the oceans and ocean productivity in the climate system, biogeochemical variables, geological and biological response to physical dynamics and to detect and monitor toxic algal blooms of notable extension through observations of ocean color. The special feature with GOCI is that like MODIS, MERIS and GLI, it will include the band triplets 660-680-745 for the measurements of sun-induced chlorophyll-a fluorescence signal from the ocean. The GOCI will provide SeaWiFS quality observations with frequencies of image acquisition 8 times during daytime and 2 times during nighttime. With all the above features, GOCI is considered to be a remote sensing tool with great potential to contribute to better understanding of coastal oceanic ecosystem dynamics and processes by addressing environmental features in a multidisciplinary way. To achieve the objectives of the GOCI mission, we develop the GOCI Data Processing System (GDPS) which integrates all necessary basic and advanced techniques to process the GOCI data and deliver the desired biological and geophysical products to its user community. Several useful ocean parameters estimated by in-water and other optical algorithms included in the GDPS will be used for monitoring the ocean environment of Korea and neighbouring countries and input into the models for climate change prediction.

  • PDF

Estimation of Global Horizontal Insolation over the Korean Peninsula Based on COMS MI Satellite Images (천리안 기상영상기 영상을 이용한 한반도 지역의 수평면 전일사량 추정)

  • Lee, Jeongho;Choi, Wonseok;Kim, Yongil;Yun, Changyeol;Jo, Dokki;Kang, Yongheack
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.151-160
    • /
    • 2013
  • Recently, although many efforts have been made to estimate insolation over Korean Peninsula based on satellite imagery, most of them have utilized overseas satellite imagery. This paper aims to estimate insolation over the Korean Peninsula based on the Korean stationary orbit satellite imagery. It utilizes level 1 data and level 2 cloud image of COMS MI, the first meteorological satellite of Korea, and OMI image of NASA as input data. And Kawamura physical model which has been known to be suitable for East Asian area is applied. Daily global horizontal insolation was estimated by using satellite images of every fifteen minutes for the period from May 2011 to April 2012, and the estimates were compared to the ground based measurements. The estimated and observed daily insolations are highly correlated as the $R^2$ value is 0.86. The error rates of monthly average insolation was under ${\pm}15%$ in most stations, and the annual average error rate of horizontal global insolation ranged from -5% to 5% except for Seoul. The experimental results show that the COMS MI based approach has good potential for estimating insolation over the Korean Peninsula.

PERFORMING OF SOC DATS INTERFACE TEST WITH MODEM/BB

  • Park, Durk-Jong;Hyun, Dae-Hwan;Koo, In-Hoi;Ahn, Sang-Il;Kim, Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.64-66
    • /
    • 2006
  • DATS will connect with IMPS and LHGS to perform the reception of sensor data and the transmission of user's meteorological data, LRIT and HRIT. MODEM/BB will perform the de-commutation of received sensor data as MI and GOCI raw data according to VCID before sending them to MI and GOCI IMPS, respectively. Especially, MODEM/BB in SOC needs to be connected to six clients that consist of the primary and backup IMPS of MSC, KOSC and SOC. On the other hand, LRIT and HRIT delivered from LHGS are encoded as VITERBI and modulated by MODEM/BB. Considering sensor data transmitted from COMS, the assumed format and size of CADU are described in this paper. Finally, results related to the status of received LRIT and HRIT by frame synchronizer in user station are also described.

  • PDF

An Improved Estimation of Outgoing Longwave Radiation Based on Geostationary Satellite

  • Kim, Hyunji;Seo, Minji;Seong, Noh-hun;Lee, Kyeong-sang;Choi, Sungwon;Jin, Donghyun;Huh, Morang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.195-201
    • /
    • 2019
  • The Outgoing Longwave Radiation (OLR) is an important satellite-driven variable for understanding the Earth's energy budget balance. The geostationary OLR retrievals require angular and spectral integration using an empirical equation for irradiance flux-to-OLR from a regression analysis, which determines the accuracy of the narrowband satellite-based OLR. We selected homogeneous pixels which is satisfied less temporal-spatial variability of cloud, on three infrared channels (6.7, 10.8, $12.0{\mu}m$) of the first multipurpose geostationary satellite in Korea, namely the Communication, Ocean and Meteorological Satellite/Meteorological Imager (COMS/MI). Multiple regression analysis was performed to retrieve OLR with improved accuracy using selected parameters based on theoretical and physical significance. This algorithm yielded retrieval with higher accuracy than broadband-based OLR retrieval: RMSE of 10.54 to $3.81W\;m^{-2}$, and bias of -8.49 to $-0.07W\;m^{-2}$.

COMS Momentum Dumping Optimal Thruster Set Selection (통신해양기상위성(COMS)의 모멘텀 덤핑 최적 추력기 선택)

  • Park, Bong-Gyu;Park, Yeong-Ung;Lee, Sang-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.54-60
    • /
    • 2006
  • This paper discusses wheel offloading approaches of the COMS which has a single solar array system for the accommodation of the optical payloads. First of all, in an effort to reduce fuel consumption and reflect practical implementation point of view, thruster sets for wheel offloading are proposed based on numerical analyses taking into account the COMS configuration. In this analysis, it is assumed that the wheel offloading is conducted twice a day. Secondly, in order to evaluate the effectiveness of the proposed thruster sets, orbit simulations are conducted for several wheel offloading approaches and compared.

Fuel Budget Analysis of the COMS Momentum Dumping (통신해양기상위성 (COMS)의 모멘텀 덤핑 사용 연료량 분석)

  • Park, Bong-Kyu;Yang, Koon-Ho;Park, Young-Woong;Choi, Jae-Dong;Lee, Sang-Cherl
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.81-88
    • /
    • 2005
  • This paper analyzes the fuel consumption for the momentum dumping of the COMS which has a single solar array system. First, numerical analyses are conducted to find an optimal momentum dumping time considering the COMS configuration. It is assumed that the momentum dumping is conducted once a day and at a fixed time of a day. Secondly, in an effort to reduce the momentum dumping fuel consumption, this paper proposes a new approach which combines the momentum dumping and the ordinary north/south stationkeeping. Finally, to evaluate the proposed technique, the stationkeeping simulations are conducted and analyzed.

Applicability of Vegetation Indices from Terra MODIS and COMS GOCI Imageries (Terra MODIS 위성영상과의 비교를 통한 COMS GOCI 위성영상의 식생지수 적용성 평가)

  • Park, Jin Ki;Kim, Bong Seop;Oh, Si Young;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.47-55
    • /
    • 2013
  • The objective of this study is to evaluate the applicability of Communication, Ocean, and Meteorological Satellite (COMS) Geostationary Ocean Color Imager (GOCI) vegetation indices on a quantitative analysis. For evaluation, the vegetation indices such as RVI, NDVI and SAVI were extracted by using COMS GOCI and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) imageries. The 4,000 points using simple random sampling (SRS) method were randomly extracted from land areas except ocean to compare the vegetation indices from two images. The results of linear regression showed that the regression coefficients of RVI, NDVI, and SAVI between COMS GOCI and Terra MODIS were 0.66~0.82, 0.71~0.83, and 0.71~0.83, respectively. Especially, the regression coefficients of RVI (r=0.85), NDVI (r=0.91) and SAVI (r=0.91) were strongly related from September 2011 to January 2012. Thus, COMS GOCI can be substituted for particular periods and it needs to verify additionally.

Thruster Configuration Optimisation on COMS and Preliminary Performances Analysis (COMS의 추력기 형상 최적화 및 예비성능 분석)

  • Park, Yeong-Ung
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.114-118
    • /
    • 2006
  • This paper describes the thrusters configuration optimized in preliminary performances for COMS (Communication, Ocean and Meteorological Satellite). The exact values of the thrusters tilt angles must be frozen for the manufacturing of COMS platform based on the EUROSTAR 3000 platform as these angles depend on the spacecraft center of mass position and thrusters location, the definition process has to be performed specifically for COMB. Concerning pitch control thrusters (6, 7), South thrusters (1, 2, 3), and East/West thrusters (4. ~, their optimum positions and force orientations based on the thrusters A/B middle position and MOL (Middle Of Life) are obtained. The torques of thrusters (plume and geometrical torques) are minimized to improve the preliminary performance of thrusters.

  • PDF

Introduction to COMS Geostationary Ocean Color Imager

  • Kang Gumsil;Kim Jongah;Myung Hwan-Chun;Yeon Jeong-Heum;Kang Song-Doug;Youn Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.108-111
    • /
    • 2005
  • The Communication Ocean, Meteorological Satellite (COMS) as the one of the national space program has been developed by Korea Aerospace Research Institute (KARl). The Geostationary Ocean Color Imager (GOCI) is one of the main payloads ofCOMS which will provide consistent monitoring of ocean-colour around the Korean Peninsula from geostationary platforms. The ocean color observation from geostationary platform is required to remedy the coverage constraints imposed by polar orbiting platforms. In this paper the main characteristics of GOCI are described and compared with the current ocean color sensors. The GOCI will provide the measurement data of 6 visible channels and 2 nearinfrared channels (40Onm - 900nm). The high radiometric sensitivity is essential of ocean color sensor because of the weak water leaving radiance.

  • PDF

INTRODUCTION OF COMS IDACS SYSTEM FOR METEOROLOGCIAL AND OCDAN MISSION

  • Lim, Hyun-Su;Park, Durk-Jong;Koo, In-Hoi;Kang, Chi-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.67-70
    • /
    • 2006
  • KARI is developing Image Data Acquisition and Control System (IDACS) for pre-processing meteorological and ocean data acquired on geostationary orbit. This paper describes the functions and architecture of IDACS and gives its operation policy including backup operation to overcome limitation of single-configured antenna system. The COMS IDACS provides the capability to receive the raw sensor data and disseminate processed MI data to users via a satellite. From the processed image data, users can produce a set of meteorological and ocean products for a wide range of applications. Most of IDACS subsystems are being developed by Korean technologies and experience acquired from previous projects. In case of COMS geometric correction software module, as it is closely dependent on the characteristics of imagers and spacecraft bus system, it is being co-developed with overseas prime contractor who develops spacecraft bus system.

  • PDF