• Title/Summary/Keyword: COMS Satellite

Search Result 367, Processing Time 0.025 seconds

The Communication Satellite Transponder Testing by EGSE System

  • Jo, Jin-Ho;Woo, Hyung-Je;Lee, Seong-Pal
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.36-40
    • /
    • 2007
  • EGSE is used to check out satellite payload during the development prior to launch. The EGSE represented in this paper is a test system for Ka band communication transponder of COMS. The EGSE consist of two subsystems as CTS subsystem and PCTS subsystem. Communication Test subsystem (CTS) performs satellite transponder RF performance testing, data analysis and trending. Most of transponder RF performances are automatically tested by the CTS subsystem. Power, Command & Telemetry subsystem (PCTS) monitor telemetry messages from the transponder and send tele-commands to satellite transponder for the configuration change. PCTS also provide simulated S/C power to the transponder during the ground validation testing. The EGSE test functions are verified by the transponder simulator testing and will be used for the flight model transponders testing.

  • PDF

STATION-KEEPING FOR COMS SATELLITE BY ANALYTIC METHODS (해석적인 방법을 사용한 통신해양기상위성의 위치유지)

  • Kim Young-Rok;Kim Hae-Yeon;Park Sang-Young;Lee Byoung-Sun;Park Jae-Woo;Choi Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.245-258
    • /
    • 2006
  • In this paper, an automation algorithm of analyzing and scheduling the station-keeping maneuver is presented for Communication, Ocean and Meteorological Satellite (COMS). The perturbation analysis for keeping the position of the geostationary satellite is performed by analytic methods. The east/west and north/south station-keeping maneuvers we simulated for COMS. Weekly east/west and biweekly north/south station-keeping maneuvers are investigated for a period of one year. Various station-keeping orbital parameters are analyzed. As the position of COMS is not yet decided at either $128.2^{\circ}E\;or\;116.0^{\circ}E$, both cases are simulated. For the case of $128.2^{\circ}E$, east/west station-keeping requires ${\Delta}V$ of 3.50m/s and north/south station-keeping requires ${\Delta}V$ of 52.71m/s for the year 2009. For the case of $116.0^{\circ}E,\;{\Delta}V$ of 3.86m/s and ${\Delta}V$ of 52.71m/s are required for east/west and north/south station-keeping, respectively. The results show that the station-keeping maneuver of COMS is more effective at $128.2^{\circ}E$.

PRELIMINARY COMS AOCS DESIGN FOR OPTIMAL OPTICAL PAYLOADS OPERATIONS

  • Park, Young-Woong;Park, Keun-Joo;Lee, Hun-Hei;Ju, Gwang-Hyuk;Park, Bong-Kyu
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.290-293
    • /
    • 2006
  • COMS (Communication, Ocean and Meteorological Satellite) shall be operated with two remote sensing payloads, MI (Meteorological Imager) and GOCI (Geostationary Ocean Color Imager). Since both payloads have rotating mechanisms, the dynamic coupling between two payloads is very important considering the pointing stability during GOCI operation. In addition, COMS adopts a single solar wing to improve the image quality, which leads to the unbalanced solar pressure torque in COMS. As a result, the off-loading of the wheel momentum needs to be performed regularly (2 times per day). Since the frequent off-loading could affect MI/GOCI imaging performance, another suboptimal off-loading time needs to be considered to meet the AOCS design requirements of COMS while having margin enough in the number of thruster actuations. In this paper, preliminary analysis results on the pointing stability and the wheel off-loading time selection with respect to MI/GOCI operations are presented.

  • PDF

COMS Operation Design to maintain Image Quality of Optical Payloads (탑재체 영상품질 유지를 위한 통신해양기상위성의 운용설계)

  • Park, Bong-Kyu;Yang, Koon-Ho;Choi, Seong-Bong
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.87-95
    • /
    • 2007
  • The ocean and meteorological payloads of COMS are concerned to experience degration of image quality due to the disturbance induced by the motion of moving parts of the payloads. And thruster firings for stationkeeping and wheel offloading are expected to degrade the image quality of the optical payloads. In case of COMS, in order to keep the optical payload free from the mechanical interference from the other payload, the operation design approach has been taken. This paper introduces the operation design of COMS taken to avoid these problems. In order to meet users requirement by avoiding the degradation of image quality, the timeline of optical payloads and housekeeping are optimized, and operational constraints are applied to the mirror motion of the meteorological payload. This paper also introduces the results of time budget analysis performed to validate the operation design.

  • PDF

Modelling and Preliminary Prediction of Thermal Balance Test for COMS (통신해양기상위성의 열평형 시험 모델 및 예비 예측)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Han, Cho-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.3
    • /
    • pp.403-416
    • /
    • 2009
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and developed by KARl for communication, ocean and meteorological observations. It will be tested under vacuum and very low temperature conditions in order to verify thermal design of COMS. The test will be performed by using KARI large thermal vacuum chamber, which was developed by KARI, and the COMS will be the first flight satellite tested in this chamber. The purposes of thermal balance test are to correlate analytical model used for design evaluation and predicting temperatures, and to verify and adjust thermal control concept. KARI has plan to use heating plates to simulate space hot condition especially for radiator panels of satellite such as north and south panels. They will be controlled from 90 K to 273 K by circulating GN2 and LN2 alternatively according to the test phases, while the main shroud of the vacuum chamber will be under constant temperature, 90 K, during all thermal balance test. This paper presents thermal modelling including test chamber, heating plates and the satellite without solar array wing and Ka-band reflectors and discusses temperature prediction during thermal balance test.

Phase Noise Evaluation of Multi-mode based-COMS Communication Transponder (다중모드 기반 천리안 위성통신 중계기의 위상잡음 특성 평가)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.20-25
    • /
    • 2012
  • The COMS, which is a multi-purposed satellite that provide the oceanic measurement data and meterological image data, is operating since 2010. Ka-band satellite communication transponder in COMS gets the MSM function that can provide the required multi-beam and transmits the multi-mode signal with high data rate. The phase noise of COMS communication transponder can be increased because of several local oscillators for MSM function and the utilization of Ka-band frequency. The phase noise affects the performance for the multi-mode and high rate data based- transmission method, it is not possible to recover the transmission data in system with the high system phase noise. In this paper, the phase noise of COMS was measured and the effects of the measured phase noise are analysed and evaluated in the viewpoint of the noise bandwidth of transmission system, Also the transmission performances for multi-mode and high rate data are evaluated in the presence of COMS phase noise.

Introduction to Establishment of the Korea Ocean Satellite Center : Basic Environment and Hardware (해양위성센터 구축 소개 : 기반환경 및 하드웨어 중심)

  • Yang, Chan-Su;Bae, Sang-Soo;Han, Hee-Jeong;Ahn, Yu-Hwan
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.191-195
    • /
    • 2008
  • In Ansan (the headquarter of KORDI ; Korea Ocean Research & Development Institute), KOSC(Korea Ocean Satellite Center) is being prepared for acquisition, processing and distribution of sensor data via L-band from GOCI(Geostationary Ocean Color Imager) instrument which is loaded on COMS(Communication, Ocean and Meteorological Satellite); it will be launched in 2009. The basis equipment of KOSC(Electric power, Network, Security) has been constructed in 2007. KOSC is being constructed data processing and management system, GOCI L-band reception system, etc. The final object of KOSC is that maximize the application of GOCI.

  • PDF