• 제목/요약/키워드: COL3A1 Gene

검색결과 49건 처리시간 0.022초

Increased interleukin-6 and TP53 levels in rotator cuff tendon repair patients with hypercholesterolemia

  • Jong Pil Yoon;Seung Gi Min;Jin-Hyun Choi;Hyun Joo Lee;Kyeong Hyeon Park;Sung Hyuk Yoon;Seong Soo Kim;Seok Won Chung;Hun-Min Kim;Dong Hyun Kim
    • Clinics in Shoulder and Elbow
    • /
    • 제25권4호
    • /
    • pp.296-303
    • /
    • 2022
  • Background: A previous study reported that hyperlipidemia increases the incidence of tears in the rotator cuff tendon and affects healing after repair. The aim of our study was to compare the gene and protein expression of torn rotator cuff tendons in patients both with and without hypercholesterolemia. Methods: Thirty patients who provided rotator cuff tendon samples were classified into either a non-hypercholesterolemia group (n=19, serum total cholesterol [TC] <200 mg/dL) and hypercholesterolemia group (n=11, serum TC ≥240 mg/dL) based on their concentrations of serum TC. The expression of various genes of interest, including COL1A1, IGF1, IL-6, MMP2, MMP3, MMP9, MMP13, TNMD, and TP53, was analyzed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, Western blot analysis was performed on the proteins encoded by interleukin (IL)-6 and TP53 that showed significantly different expression levels in real-time qRT-PCR. Results: Except for IGF1, the gene expression levels of IL-6, MMP2, MMP9, and TP53 were significantly higher in the hypercholesterolemic group than in the non-hypercholesterolemia group. Western blot analysis confirmed significantly higher protein levels of IL-6 and TP53 in the hypercholesterolemic group (p<0.05). Conclusions: We observed an increase in inflammatory cytokine and matrix metalloproteinase (MMP) levels in hypercholesterolemic patients with rotator cuff tears. Increased levels of IL-6 and TP53 were observed at both the mRNA and protein levels. We suggest that the overexpression of IL-6 and TP53 may be a specific feature in rotator cuff disease patients with hypercholesterolemia.

Characterization of the Small Cryptic Plasmid, pGD2, of Klebsiellia sp. KCL-2.

  • Yoo, Ju-Soon;Kim, Hae-Sun;Chung, Soo-Yeol;Lee, Young-Choon;Cho, Young-Soo;Choi, Yong-Lark
    • BMB Reports
    • /
    • 제34권6호
    • /
    • pp.584-589
    • /
    • 2001
  • One of the cryptic plasmids from the oil degrading bacterium Klebsiella sp. KCL-2, the small plasmid pGD2, has been identified and characterized. This plasmid has a size of 3.6 kb with unknown functions. We constructed the recombinant plasmid pMGD2. The nucleotide sequences of the plasmid were determined and two open reading frames were detected. ORF1 encodes a replication initiator protein (RepA), which has a high degree of homology with the protein of ColE2 plasmid. The product encoded by ORF2 showed a high similarity with the transposase protein of IS5. IS5 is 1195 by long and contains an inverted terminal repetition of 16 bp with one mismatch. Stem-loop structures in the 5'untranslated region of the repA suggest that a putative gene, incA, is located in a complementary strand to the leader region of the repA mRNA.

  • PDF

Effects of immunosuppressants, FK506 and cyclosporin A, on the osteogenic differentiation of rat mesenchymal stem cells

  • Byun, Yu-Kyung;Kim, Kyoung-Hwa;Kim, Su-Hwan;Kim, Young-Sung;Koo, Ki-Tae;Kim, Tai-Il;Seol, Yang-Jo;Ku, Young;Rhyu, In-Chul;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • 제42권3호
    • /
    • pp.73-80
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the effects of the immunosuppressants FK506 and cyclosporin A (CsA) on the osteogenic differentiation of rat mesenchymal stem cells (MSCs). Methods: The effect of FK506 and CsA on rat MSCs was assessed in vitro. The MTT assay was used to determine the deleterious effect of immunosuppressants on stem cell proliferation at 1, 3, and 7 days. Alkaline phosphatase (ALP) activity was analyzed on days 3, 7, and 14. Alizarin red S staining was done on day 21 to check mineralization nodule formation. Real-time polymerase chain reaction (RT-PCR) was also performed to detect the expressions of bone tissue-specific genes on days 1 and 7. Results: Cell proliferation was promoted more in the FK506 groups than the control or CsA groups on days 3 and 7. The FK506 groups showed increased ALP activity compared to the other groups during the experimental period. The ALP activity of the CsA groups did not differ from the control group in any of the assessments. Mineralization nodule formation was most prominent in the FK506 groups at 21 days. RT-PCR results of the FK506 groups showed that several bone-related genes-osteopontin, osteonectin, and type I collagen (Col-I)-were expressed more than the control in the beginning, but the intensity of expression decreased over time. Runx2 and Dlx5 gene expression were up-regulated on day 7. The effects of 50 nM CsA on osteonectin and Col-I were similar to those of the FK506 groups, but in the 500 nM CsA group, most of the genes were less expressed compared to the control. Conclusions: These results suggest that FK506 enhances the osteoblastic differentiation of rat MSCs. Therefore, FK506 might have a beneficial effect on bone regeneration when immunosuppressants are needed in xenogenic or allogenic stem cell transplantation to treat bone defects.

MiR-29a and MiR-140 Protect Chondrocytes against the Anti-Proliferation and Cell Matrix Signaling Changes by IL-1β

  • Li, Xianghui;Zhen, Zhilei;Tang, Guodong;Zheng, Chong;Yang, Guofu
    • Molecules and Cells
    • /
    • 제39권2호
    • /
    • pp.103-110
    • /
    • 2016
  • As a degenerative joint disease, osteoarthritis (OA) constitutes a major cause of disability that seriously affects the quality of life of a large population of people worldwide. However, effective treatment that can successfully reverse OA progression is lacking until now. The present study aimed to determine whether two small non-coding RNAs miR-29a and miR-140, which are significantly down-regulated in OA, can be applied together as potential therapeutic targets for OA treatment. MiRNA synergy score was used to screen the miRNA pairs that potentially synergistically regulate OA. An in vitro model of OA was established by treating murine chondrocytes with IL-$1{\beta}$. Transfection of miR-29a and miR-140 via plasmids was investigated on chondrocyte proliferation and expression of nine genes such as ADAMTS4, ADAMTS5, ACAN, COL2A1, COL10A1, MMP1, MMP3, MMP13 and TIMP metallopeptidase inhibitor 1 (TIMP1). Western blotting was used to determine the protein expression level of MMP13 and TIMP1, and ELISA was used to detect the content of type II collagen. Combined use of miR-29a and miR-140 successfully reversed the destructive effect of IL-$1{\beta}$ on chondrocyte proliferation, and notably affected the MMP13 and TIMP1 gene expression that regulates extracellular matrix. Although co-transfection of miR-29a and miR-140 did not show a synergistic effect on MMP13 protein expression and type II collagen release, but both of them can significantly suppress the protein abundance of MMP13 and restore the type II collagen release in IL-$1{\beta}$ treated chondrocytes. Compared with single miRNA transfection, cotransfection of both miRNAs exceedingly abrogated the suppressed the protein production of TIMP1 caused by IL-$1{\beta}$, thereby suggesting potent synergistic action. These results provided1novel insights into the important function of miRNAs' collaboration in OA pathological development. The reduced MMP13, and enhanced TIMP1 protein production and type II collagen release also implies that miR-29a and miR-140 combination treatment may be a possible treatment for OA.

울릉국화 엑소좀의 항노화 활성 효과 연구 (Study on the Anti-Aging Activity of Chrysanthemum lucidum Exosomes)

  • 김민하;윤은정;김정수;배소현;최나영;박시준;이현상
    • 대한화장품학회지
    • /
    • 제50권3호
    • /
    • pp.289-299
    • /
    • 2024
  • 울릉국화(Chrysanthemum lucidum, C. lucidum)는 국화과의 여러해살이풀로, 경북 울릉도에만 분포하는 고유종으로, 이전 연구에서 울릉국화 추출물의 높은 폴리페놀 및 플라보노이드 물질 함량이 높아 우수한 항산화 활성이 보고되어 있으나, 울릉국화 추출물의 주름개선, 세포재생 등과 같은 항노화와 관련된 효능은 잘 알려져 있지 않으며, 울릉국화 유래 엑소좀(C. lucidum-derived extracellular vesicles, ClDEVs)에 대한 활성 연구는 전무한 실정이다. 따라서, 본 연구에서는 in vitro 및 인체적용시험을 통해 ClDEVs에 대한 항노화 활성 효과를 검증하였다. In vitro 세포 실험에서, ClDEVs는 세포 재생을 촉진하고, 콜라겐 합성 유전자인 COL1A1의 발현을 증가시켰고, 피부 장벽 개선 관련 바이오마커 유전자인 LOR 및 FLG의 발현을 증가시켰다. 또한, 노화를 유도시킨 세포에서 노화 관련 바이오마커인 CDKN2A (encodes p16) 및 TP53 (encodes p53) 유전자의 발현을 억제시켰다. 인체적용시험에서 ClDEVs가 함유된 화장료를 4 주간 사용 후 눈가주름 및 팔자주름 개선을 평가한 결과, 4 주 후 통계적으로 유의한 수준의 주름 개선 효과를 나타내었다. 결론적으로 ClDEVs는 주름 개선 및 항노화를 위한 바이오 화장품으로서 높은 응용 가능성을 입증하였다.

볼락(Sebastes inermis) 근육단백질 유전자의 성장단계별 발현 양상과 parvalbumin 유전자 클로닝 (Expression Pattern of Skeletal-Muscle Protein Genes and Cloning of Parvalbumin mRNA in Dark-banded Rockfish (Sebastes inermis))

  • 장요순
    • 한국어류학회지
    • /
    • 제23권1호
    • /
    • pp.1-9
    • /
    • 2011
  • ACP (annealing control primer)를 사용하여 DDRT (differential display reverse transcription)-PCR 방법으로 볼락의 성장단계에 따라 발현량 차이를 나타내는 DEG (differentially expressed gene)를 확보하였다. ACP 120개를 분석하여 18개월령 근육조직에서보다 6개월령 근육조직에서 발현량이 많은 DEG 16개와 6개월령 근육조직에서보다 18개월령 근육조직에서 발현량이 더 많은 DEG22개의 염기서열을 분석하였다. DEG 염기서열을 BLAST 검색한 결과, parvalbumin (PVALB) 등 18개의 유전자(PVALB, NDKB, TPM, TnI, GAPDH, CKM2, factor 2 SERF2, AMPD, TRICA, ARHGAP15, ESD, hsp70, COL1A2, GST, Midllip1, MYL1, SERCA1B, FTH1)와 69~95%의 상동성을 나타냈다. Real time PCR 분석법으로 6개월령 근육조직에서 발현량이 많은 DEG14와 PVALB 유전자의 성장단계별 발현양상을 조사한 결과, 볼락이 성장함에 따라 발현량이 감소하였으며, 특히 PVALB 유전자는 6개월령 이후에는 발현량이 극히 적었다. 6개월령 근육조직에서보다 18 개월령 근육조직에서 발현량에서 많았던 CKM2 유전자는 성장함에 따라 발현량이 계속 증가하였고, 4세 이후에는 발현량이 감소하였다. DEG의 조직특이적 발현양상을 분석한 결과, DEG14는 근육, 간, 신장, 및 비장조직에서 발현되었으며, PVALB 유전자는 근육과 신장조직에서 발현되었고, 간과 비장조직에서는 발현되지 않았다. CKM2 유전자는 근육, 신장 및 비장조직에서 발현되었고, 간 조직에서는 발현되지 않았다. PVALB 유전자의 mRNA 크기는 659 bp 이며, 110개의 아미노산으로 구성되어 있다. Parvalbumin과 CKM2 유전자는 성장속도가 빠른 어류 선발에 이용할 수 있는 분자마커 개발에 활용하고자한다.

Hypoxia Mediates Runt-Related Transcription Factor 2 Expression via Induction of Vascular Endothelial Growth Factor in Periodontal Ligament Stem Cells

  • Xu, Qian;Liu, Zhihua;Guo, Ling;Liu, Rui;Li, Rulei;Chu, Xiang;Yang, Jiajia;Luo, Jia;Chen, Faming;Deng, Manjing
    • Molecules and Cells
    • /
    • 제42권11호
    • /
    • pp.763-772
    • /
    • 2019
  • Periodontitis is characterized by the loss of periodontal tissues, especially alveolar bone. Common therapies cannot satisfactorily recover lost alveolar bone. Periodontal ligament stem cells (PDLSCs) possess the capacity of self-renewal and multilineage differentiation and are likely to recover lost alveolar bone. In addition, periodontitis is accompanied by hypoxia, and hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) is a master transcription factor in the response to hypoxia. Thus, we aimed to ascertain how hypoxia affects runt-related transcription factor 2 (RUNX2), a key osteogenic marker, in the osteogenesis of PDLSCs. In this study, we found that hypoxia enhanced the protein expression of $HIF-1{\alpha}$, vascular endothelial growth factor (VEGF), and RUNX2 ex vivo and in situ. VEGF is a target gene of $HIF-1{\alpha}$, and the increased expression of VEGF and RUNX2 proteins was enhanced by cobalt chloride ($CoCl_2$, $100{\mu}mol/L$), an agonist of $HIF-1{\alpha}$, and suppressed by 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1, $10{\mu}mol/L$), an antagonist of $HIF-1{\alpha}$. In addition, VEGF could regulate the expression of RUNX2, as RUNX2 expression was enhanced by human VEGF ($hVEGF_{165}$) and suppressed by VEGF siRNA. In addition, knocking down VEGF could decrease the expression of osteogenesis-related genes, i.e., RUNX2, alkaline phosphatase (ALP), and type I collagen (COL1), and hypoxia could enhance the expression of ALP, COL1, and osteocalcin (OCN) in the early stage of osteogenesis of PDLSCs. Taken together, our results showed that hypoxia could mediate the expression of RUNX2 in PDLSCs via $HIF-1{\alpha}$-induced VEGF and play a positive role in the early stage of osteogenesis of PDLSCs.

Leonurus sibiricus L. ethanol extract promotes osteoblast differentiation and inhibits osteoclast formation

  • Jae‑Hyun Kim;Minsun Kim;Hyuk‑Sang Jung;Youngjoo Sohn
    • International Journal of Molecular Medicine
    • /
    • 제44권3호
    • /
    • pp.913-926
    • /
    • 2019
  • Leonurus sibiricus L. (LS) is a medicinal plant used in East Asia, Europe and the USA. LS is primarily used in the treatment of gynecological diseases, and recent studies have demonstrated that it exerts anti-inflammatory and antioxidant effects. To the best of our knowledge, the present study demonstrated for the first time that LS may promote osteoblast differentiation and suppress osteoclast differentiation in vitro, and that it inhibited lipopolysaccharide (LPS)-induced bone loss in a mouse model. LS was observed to promote the osteoblast differentiation of MC3T3-E1 cells and upregulate the expression of runt-related transcription factor 2 (RUNX2), a key gene involved in osteoblast differentiation. This resulted in the induction of the expression of various osteogenic genes, including alkaline phosphatase (ALP), osteonectin (OSN), osteopontin (OPN), type I collagen (COL1) and bone sialoprotein (BSP). LS was also observed to inhibit osteoclast differentiation and bone resorption. The expression levels of nuclear factor of activated T-cells 1 (NFATc1) and c-Fos were inhibited following LS treatment. NFATc1 and c-Fos are key markers of osteoclast differentiation that inhibit receptor activator of nuclear factor-κB ligand (RANKL)-induced mitogen-activated protein kinase (MAPKs) and nuclear factor (NF)-κB. As a result, LS suppressed the expression of osteoclast-associated genes, such as matrix metallopeptidase-9 (MMP-9), cathepsin K (Ctsk), tartrate-resistant acid phosphatase (TRAP), osteoclast-associated immunoglobulin-like receptor (OSCAR), c-src, c-myc, osteoclast stimulatory transmembrane protein (OC-STAMP) and ATPase H+ transporting V0 subunit d2 (ATP6v0d2). Consistent with the in vitro results, LS inhibited the reduction in bone mineral density and the bone volume/total volume ratio in a mouse model of LPS-induced osteoporosis. These results suggest that LS may be a valuable agent for the treatment of osteoporosis and additional bone metabolic diseases.

Melanin extract from Gallus gallus domesticus promotes proliferation and differentiation of osteoblastic MG-63 cells via bone morphogenetic protein-2 signaling

  • Yoo, Han-Seok;Chung, Kang-Hyun;Lee, Kwon-Jai;Kim, Dong-Hee;An, Jeung Hee
    • Nutrition Research and Practice
    • /
    • 제11권3호
    • /
    • pp.190-197
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Gallus gallus domesticus (GD) is a natural mutant breed of chicken in Korea with an atypical characterization of melanin in its tissue. This study investigated the effects of melanin extracts of GD on osteoblast differentiation and inhibition of osteoclast formation. MATERIALS/METHODS: The effects of the melanin extract of GD on human osteoblast MG-63 cell differentiation were examined by evaluating cell viability, osteoblast differentiation, and expression of osteoblast-specific transcription factors such as bone morphogenetic protein 2 (BMP-2), small mothers against decapentaplegic homologs 5 (SMAD5), runt-related transcription factor 2 (RUNX2), osteocalcin and type 1 collagen (COL-1) by reverse transcription-polymerase chain reaction and western blotting analysis. We investigated the inhibitory effect of melanin on the osteoclasts formation through tartrate-resistant acid phosphatase (TRAP) activity and TRAP stains in Raw 264.7 cell. RESULTS: The melanin extract of GD was not cytotoxic to MG-63 cells at concentrations of $50-250{\mu}g/mL$. Alkaline phosphatase (ALP) activity and bone mineralization of melanin extract-treated cells increased in a dose-dependent manner from 50 to $250{\mu}g/mL$ and were 149% and 129% at $250{\mu}g/mL$ concentration, respectively (P < 0.05). The levels of BMP-2, osteocalcin, and COL-1 gene expression were significantly upregulated by 1.72-, 4.44-, and 2.12-fold in melanin-treated cells than in the control cells (P < 0.05). The levels of RUNX2 and SMAD5 proteins were higher in melanin-treated cells than in control vehicle-treated cells. The melanin extract attenuated the formation of receptor activator of nuclear factor kappa-B ligand-induced TRAP-positive multinucleated RAW 264.7 cells by 22%, and was 77% cytotoxic to RAW 264.7 macrophages at a concentration of $500{\mu}g/mL$. CONCLUSIONS: This study provides evidence that the melanin extract promoted osteoblast differentiation by activating BMP/SMADs/RUNX2 signaling and regulating transcription of osteogenic genes such as ALP, type I collagen, and osteocalcin. These results suggest that the effective osteoblastic differentiation induced by melanin extract from GD makes it potentially useful in maintaining bone health.

갈랑가 뿌리 추출물의 항산화, 항노화 효과 및 W/O형 에멀젼에서 항산화 효과의 보존성 (Antioxidant and anti-aging effects of Alpinia galanga L. rhizome extracts and preservation of antioxidant effects in W/O type emulsion)

  • 윤선영;김봉환;장영아;김세기
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.424-435
    • /
    • 2023
  • 본 연구 결과 DPPH 라디칼 소거 활성은 갈랑가 뿌리 70% 에탄올 추출물(AG.E) 100 ㎍/mL 농도에서 81.8%이었으며 ABTS+ 라디칼 소거 활성은 AG.E 50 ㎍/mL의 낮은 농도에서 L-Ascorbic acid (AA)와 유사한 99.8%로 확인되었다. 항노화 활성을 측정하기 위하여 collagenase와 elastase 저해 활성을 측정한 결과 둘 모두에서 AG.E는 50 ㎍/mL의 낮은 농도부터 epigallocatechin (EGCG)보다 더 높은 저해 효과를 나타내었다. 특히 500 ㎍/mL 농도에서 EGCG 대비 3배 이상의 저해 효과를 보였다. CCD-986sk 세포내에서 AG.E의 항노화 효과를 검증하기 위해 UVB로 자극한 다양한 실험에서도 우수한 항노화 효과가 얻어졌다. RT-PCR을 통한 유전자 발현 분석 실험에서 COL1A mRNA 발현량은 AG.E 20 ㎍/mL 저농도에서 무첨가 대비 2.90배 증가시키는 결과가 얻어져 항노화관련 우수한 기능성 소재로 개발 가능성이 확인되었다. 제형에 소재의 적용 시 생리활성의 경시적 보전성에 대한 기초 연구로서 AG.E 및 AA등을 안정한 W/O type emulsion에 첨가하여 25 ℃ 항온조에 보관하면서 1일차, 30일차, 60일차에 DPPH와 ABTS+ 라디칼소거 활성을 측정한 결과 모두 경시적으로 항산화 효과가 높은수준 유지됨을 확인하였다.