• Title/Summary/Keyword: COL1A1

Search Result 276, Processing Time 0.024 seconds

The RecA-like protein of Schizosoccharomvces pombe: its cellular level is induced by DNA-damaging agents (DNA 상해요인에 의한 Schizosaccharomyces pombe RecA 유사 단백질의 유도생성)

  • 이정섭;박상대
    • The Korean Journal of Zoology
    • /
    • v.37 no.2
    • /
    • pp.232-239
    • /
    • 1994
  • RecA protein plans a central role in homologous recombination and DNA repair in Escherichia cofi (E. colD. The function 8nd structure of this protein are universal in prokarvotes and also conserved in eukaryotes such as yeast. The RecA-like protein with 74 lInDa in size has already been identified and purified from a fission yeast Schizosaccharomyces pombe (5. pommel (Lee, 19911. From this study it was revealed that the RecA-like protein of 5. pombe was highly inducible to various DNA damaging agents and inhibitors of nucleotide pool svnthesizins enzymes. The cellular level of the 5. pombe RecA-like protein wi,u markedly increased, upto 5- to 10-fold, by treatment with various DNA-damains agents including ultraviolet (UV) light, methyl methanesulfonate WS),4-nitroquinoline-1-oxide (4-NQO), and mitomycin-C (MMC), similar to E. cofi RecA protein. Interestingly, the protein level was also increased by inhibitors of nucleotide pool forming enzlwnes such as methotrexate (MTX) and hvdroxvurea (HU). The most effective doses for the inducibility of 4-NQO, MMS, W, MMC, MTX, and HU were 0.2 Ug/ml, 30 mM, 200 J/ma, 0.4 $\mus/ml,$ 1 Ug/ml, and 100 mM, respectively. The range of effective duration time for the inducibilitv of RecA-like protein was from 270 to 450 mins. These results suggest that the 5. pombe RecA-like protein also platys an imortant role in cellular responses to DNA damage as in E. coli system.

  • PDF

Properties of Thermally Stimulated Current in ZnO (ZnO 세라믹의 열화와 열자격전류에 관한 연구)

  • Lee, S.I.;Park, I.K.;Jang, K.U.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1211-1213
    • /
    • 2004
  • In this paper, in other the study shift a degradation and electrical properties on ZnO based grain beurdry layer, we mearured thermally stmulated current. Also the TSC was investigated for understanding of GBL's interfacial carrier shift on bias voltage, bias time, bias temperature. as a result, the two peahs of $p_1$, $p_2$ was observed by conduction of the trapped carrier of border between the oxidation layer and the grains $P_3$ and $P_4$ Peaks observed to the ionization excition excitation in the grain.

  • PDF

Precision Measurement of Silicon Wafer Resistivity Using Single-Configuration Four-Point Probe Method (Single-configuration FPP method에 의한 실리콘 웨이퍼의 비저항 정밀측정)

  • Kang, Jeon-Hong;Yu, Kwang-Min;Koo, Kung-Wan;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1434-1437
    • /
    • 2011
  • Precision measurement of silicon wafer resistivity has been using single-configuration Four-Point Probe(FPP) method. This FPP method have to applying sample size, shape and thickness correction factor for a probe pin spacing to precision measurement of silicon wafer. The deference for resistivity measurement values applied correction factor and not applied correction factor was about 1.0 % deviation. The sample size, shape and thickness correction factor for a probe pin spacing have an effects on precision measurement for resistivity of silicon wafer.

In vivo Characterization of Sustained-Release Formulation of Recombinant Human Growth Hormone in Immunosuppressed Rats and Dogs

  • Jo, Yeong-Woo;Park, Yong-Man;Lee, Ghun-Il;Yang, Hi-Chang;Kim, Mi-Ryang;Lee, Sung-Hee;Kwon, Jong-Won;Kim, Won-Bae;Choi, Eung-Chil
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.424.2-424.2
    • /
    • 2002
  • The in vivo release characteristics of rhGH-loaded PLGA microsphere prepared using a double emulsion process from hydrophilic 50:50 poly(D.L-lactide-co-glycolide) (PLGA) polymers were analyzed. This formulation showed particle size of ca 53.1$\mu\textrm{m}$ with high drug incorporation efficiency. To investigate in vivo release kinetics without the interference of formation of antibodies to rhGH in the experimental animals, the animals were immunosuppressed by treatment with Cyclosporin. (omitted)

  • PDF

Potential biomarkers and signaling pathways associated with the pathogenesis of primary salivary gland carcinoma: a bioinformatics study

  • Bayat, Zeynab;Ahmadi-Motamayel, Fatemeh;Salimi Parsa, Mohadeseh;Taherkhani, Amir
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.42.1-42.17
    • /
    • 2021
  • Salivary gland carcinoma (SGC) is rare cancer, constituting 6% of neoplasms in the head and neck area. The most responsible genes and pathways involved in the pathology of this disorder have not been fully understood. We aimed to identify differentially expressed genes (DEGs), the most critical hub genes, transcription factors, signaling pathways, and biological processes (BPs) associated with the pathogenesis of primary SGC. The mRNA dataset GSE153283 in the Gene Expression Omnibus database was re-analyzed for determining DEGs in cancer tissue of patients with primary SGC compared to the adjacent normal tissue (adjusted p-value < 0.001; |Log2 fold change| > 1). A protein interaction map (PIM) was built, and the main modules within the network were identified and focused on the different pathways and BP analyses. The hub genes of PIM were discovered, and their associated gene regulatory network was built to determine the master regulators involved in the pathogenesis of primary SGC. A total of 137 genes were found to be differentially expressed in primary SGC. The most significant pathways and BPs that were deregulated in the primary disease condition were associated with the cell cycle and fibroblast proliferation procedures. TP53, EGF, FN1, NOTCH1, EZH2, COL1A1, SPP1, CDKN2A, WNT5A, PDGFRB, CCNB1, and H2AFX were demonstrated to be the most critical genes linked with the primary SGC. SPIB, FOXM1, and POLR2A significantly regulate all the hub genes. This study illustrated several hub genes and their master regulators that might be appropriate targets for the therapeutic aims of primary SGC.

Identification and Functional Analysis of Escherichia coli RNase E Mutants (Escherichia coli 리보핵산 내부분해효소 RNase E의 돌연변이체 선별 및 특성분석)

  • Shin, Eun-Kyoung;Go, Ha-Young;Kim, Young-Min;Ju, Se-Jin;Lee, Kang-Seok
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.325-330
    • /
    • 2007
  • RNase E is an essential Escherichia coli endoribonuclease that plays a major role in the decay and processing of a large fraction of RNAs in the cell and expression of N-terminal domain consisted of 1-498 amino acids (N-Rne) is sufficient to support normal cellular growth. By utilizing these properties of RNase E, we developed a genetic system to screen for amino acid substitutions in the catalytic domain of the protein (N-Rne) that lead to various phenotypes. Using this system, we identified three kinds of mutants. A mutant N-Rne containing amino acid substitution in the S1 domain (I6T) of the protein was not able to support survival of E. coli cells, and another mutant N-Rne with amino acid substitution at the position 488 (R488C) in the small domain enabled N-Rne to have an elevated ribonucleolytic activity, while amino acid substitution in the DNase I domain (N305D) only enabled N-Rne to support survival of E. roli cells when the mutant N-Rne was over-expressed. Analysis of copy number of ColEl-type plasmid revealed that effects of amino acid substitution on the ability of N-Rne to support cellular growth stemmed from their differential effects on the ribonucleolytic activity of N-Rne in the cell. These results imply that the genetic system developed in this study can be used to isolate mutant RNase E with various phenotypes, which would help to unveil a functional role of each subdomain of the protein in the regulation of RNA stability in E. coli.

Effects of Cirsium setidens nakai on In Vitro Growth and Osteogenic Differentiation of Human Bone-Derived Mesenchymal Stem Cells

  • Kim, Hye-Been;Cheong, Kyu Min;Seo, Yu Ri;Lim, Ki-Taek
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.109-109
    • /
    • 2017
  • Cirsium setidens nakai belonging to cirsium has been reported to have various physiological activities including anticancer activity because it contains polyphenols, dietary fiber, minerals and vitamins. Despite these positive positive efficacies, however, no studies have studied cirsium setidens nakai products as biomaterials such as cellular metabolism and bone formation. Thus, the aim of this study was evaluate of osteogenesis differentiation a natural material extracted from cirsium setidens nakai. The natural materials in this studys in this studywere created by 40% ethanol extraction process and then dried. FabricatedFabricatedpowders were added to a medium at various concentrations (0.01, 0.05, 0.1, 0.2, and $0.25{\mu}g/mL$), and pure medium was used as a control. The natural material caused positive increases in cell metabolic activity and mineralized bone formation without cytotoxicity. In addition, we observed higher expression of genes such as ALP, BSP, Runx2 and COL1 in cirsium setidens nakai treatment cells. As a result, this study produced and investigated cirsium setidens nakai extracts and the natural materials showed potential biomaterials. In this research indicated that the cirsium setidens nakai extracts might have promising applications in areas of agricultural, biological and food engineering as a biomaterial.

  • PDF

Studies on the Change of Biochemical Components during Wintering and Thawing Periods and Cold Hardiness of Mulberry(Morus) (월동 및 해동기 뽕나무의 생화학적 물질의 변동과 내동성과의 관계)

  • Choe, Yeong-Cheol;Ryu, Geun-Seop;An, Yeong-Hui
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.1
    • /
    • pp.1-11
    • /
    • 1997
  • In relations to cold acclimation, experiment was carried out to understand the seasonal changes in reserve substances of the mulberry. The shoot barks and leaves of three mulberry varieties(Kaeryangppong, Shinilppong and Yongcheonppong) were sampled, after that their reserve substances were analyzed. The cold hardiness of mulberry was investigated by DTA(Differential Thermal Analysis) method. To increase cold hardiness, gibberellin(100 ppm), kinetin(100 ppm) and Jambi 8 were sprayed on the mulberry leaves. After spraying, falling of the leaves of Yongcheonppong occured earier than the other varities. After the first frost, all of treatments except gibberellin were entirely fallen. Growth regulator extended the leaves fallen. After spraying, water of the shoot barks was not showed difference in the content among the treatments, but amino acid, carbohydrate and soluble protein increased from September to October. Starch content of the shoot barks and leaves was maximum in October, but thereafter decreased during wintering stage. In Shinilppong, Jambi 8 spray increased cold hardiness by 1-2$^{\circ}C$ more than no spray. It was concluded that the cold hardiness of the mulberry in midwinter is closely related to the reserve substances with spraying Jambi 8 on the mulberry leaves.

  • PDF

Effect of Metformin on Cell Growth and Differentiation in Cultured Odontoblasts

  • Oh, Chang Young;Kim, Su-Gwan;Go, Dae-San;Yu, Sun-Kyoung;Kim, Tae-Hoon;Kim, Chun Sung;Park, Joo-Cheol;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.42 no.2
    • /
    • pp.39-45
    • /
    • 2017
  • Metformin (1,1-dimethylbiguanide hydrochloride), derived from French lilac (Galega officinalis), is a first-line anti-diabetic drug prescribed for patients with type 2 diabetes. However, the role of metformin in odontoblastic cell differentiation is still unclear. This study therefore undertook to examine the effect of metformin on regulating odontoblast differentiation in MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells. As compared to controls, metformin significantly accelerated the mineralization, significantly increased and accelerated the expressions of ALP and Col I mRNAs, and significantly increased the accelerated expressions of DSPP and DMP-1 mRNAs, during differentiation of MDPC-23 cells. There was no alteration in cell proliferation of MDPC-23 cells, on exposure to metformin. These results suggest that the effect of metformin on MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells, facilitates the odontoblast differentiation and mineralization, without altering the cell proliferation.

Preparation of Ultrafine Mullite Powder from Metal Alkoxides (금속 알콕사이드로부터 Mullite 초미분체의 제조)

  • Yim, Going;Yim, Chai-Suk;Kim, Young-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.719-724
    • /
    • 2006
  • Ultrafine mullite powder was prepared from aluminium-secbutoxide and tetraethyl orthosilicate(TEOS) in the molar $Al_2O_3/SiO_2$=3/2. Sol-gel method by partial hydrolysis technique, as it were, first, TEOS was partially hydrolysized and then mixed with Al-secbutoxide for complete hydrolysis was used. X-ray diffraction, infrared spectroscopy and transmission electron microscopy, etc. confirmed that the mullite powder prepared by this method is in the stoichiometric $Al_2O_3/SiO_2$ ratio. Al-Si spinel was formed at $980^{\circ}C$ and ultrafine mullite powder with about 20 nm particle size was obtained above $1,200^{\circ}C$. Also mullite powders calcined at $1,600^{\circ}C$ had a stoichiometric composition, $3Al_2O_3{\cdot}2SiO_2$ and the lattice constants of the mullite powders calcined above $1,200^{\circ}C$ were almost coincided with theoretical values.