• Title/Summary/Keyword: COD reduction

Search Result 298, Processing Time 0.027 seconds

COD Reduction and Process Optimization of Waste Water from the Paper-mill (제지폐수의 COD 저감 및 처리공정 최적화에 관한 연구)

  • Shin, Dong Ho;Lee, Yong Taek
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.693-697
    • /
    • 2005
  • We researched in the optimization of unit process and the stabilization of discharged water quality through the treatment of the occurrence of wastewater classified by place of production which has high COD load and non degradable COD load in paper industry. As the result, using polymer, inorganic flocculants and alum at the same time is effective to advance the COD value through the colloid material removal with SS in the first treatment process. Moreover, it is determined to keep optimum of $FeCl_2/H_2O_2$ in the concentration of 1000 ppm in the ratio of 1/1. Because It is confirmed that to input excess chemicals using Fenton oxidation method gives adverse effect to water quality.

The Effects of Light Intensity, Inoculum Size, and Cell Immobilisation on the Treatment of Sago Effluent with Rhodopseudomonas palustris Strain B1

  • Ibrahim, Shaliza;Vikineswary, S.;Al-Azad, Sujjat;Chong, L.L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.377-381
    • /
    • 2006
  • A study was carried out to determine a suitable light intensity and inoculum size for the growth of Rhodopseudomonas palustris strain B1. The pollution reduction of sago effluent using free and immobilised R. palustris cells was also evaluated. The growth rate in glutamatemalate medium was highest at 4 klux compared to 2.5 and 3 klux. The optimal inoculum size was 10% (v/v). Both the COD and BOD of the sago effluent were reduced by 67% after three days of treatment. The difference in biomass production or BOD and COD removal with higher inoculum sizes of 15 and 20% was minimal. This could be attributed to limited nutrient availability in the substrate. The use of immobilised cells of R. palustris reduced the pollution load 10% less compared to pollution reduction by free cells. Hence, there was no significant difference in using free or immobilised cells for the treatment of sago effluent.

Change Pattern Analysis of the COD and Nutrient Concentration in Jumunjin Harbour, Gangneung (강릉 주문진항 COD 및 영양염류의 농도변화 양상 분석)

  • Cho Hong-Yean;Kim Chang-Il;Lee Dal-Soo;Han Dong-Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.3
    • /
    • pp.211-224
    • /
    • 2006
  • It was analysed that spatial and temporal change patterns of COD, TN and TP were measured monthly from 2002 to 2005 in Jumunjin Harbour. Cenerally, concentration of upper layer higher than lower layer, concentration difference of COD, TN and TP on upper lower layer at inner zone in Jumunjin Harbour higher than sea area front of breakwater. Seasonal change width of COD concentration different, but seasonal change pattern of COD, $NH_{4}-N$ and TN clearly showed. Water quality improvement effect of seawater exchange facilities and sewage treatment plants is analysed quantitatively using averaged spatial and temporal data set. Change of COD small at 2003, concentration reduced about $34{\sim}47%$ at all zones on 2004 and 2005. TN was influenced largely effect of seawater exchange facilities. Concentration reduction at zone 1, 2, 3 estimated about $60{\sim}70%,\;40{\sim}60%,\;40%$, respectively. As a consequence, concentration reduction of COD and TN that is, effect of water quality improvement influenced seawater exchange facilities appeared not only at inner zone, also sea area front of breakwater and entrance of Jumunjin Harbour.

Effective Costal Environmental Management by Conjugation of Modeling of Bio-Purification and Total Allowable Pollutant Loads in Masan Bay (생물정화기작과 총허용오염부하량을 연계한 마산만의 효율적 해양환경 개선방안)

  • Eom, Ki-Hyuk;Kim, Gui-Young;Lee, Won-Chan;Lee, Dae-In
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.38-46
    • /
    • 2012
  • This study carried out current status, characteristics, and problems of coastal environment management on semi-enclosed Masan Bay in Korea and suggests cost-effective and eco-friendly water quality management policy. The pollutants from terrestrial sources into the Bay have apparently environmental pollution problems, such as eutrophication, red tide, and hypoxia. The carrying capacity of the Bay is estimated by hydrodynamic model and ecosystem model, material circulation including bivalve in ecosystem is analyzed by the growth model of bivalve. The resulting reduction in the input load was found to be 50~90%, which is unrealistic. When the efficiency of water quality improvement through bivalve farming was assessed based on the autochthonous COD, 30.7% of the total COD was allochthonous COD and 69.3% was autochthonous COD. The overall autochthonous COD reduction rate by bivalve aquaculture farm was found to be about 6.7%. This study indicate that bivalve farming is about 31% less expensive than advanced treatment facilities that remove both nitrogen and phosphorous.

Electrocoagulation of Disperse Dyebath Wastewater: Optimization of Process Variables and Sludge Production

  • Aygun, Ahmet;Nas, Bilgehan;Sevimli, Mehmet Faik
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.82-91
    • /
    • 2021
  • This study was conducted to investigate the effect of initial pH, current density, and electrolysis time on process performance in terms of decolorization and chemical oxygen demand (COD) removal from disperse dyebath wastewater (DDW) by mono-polar parallel laboratory scale electrocoagulation (EC) process. COD reduction of 51.3% and decolorization of 92.8% were obtained with operating cost of 0.19 €/㎥ treated wastewater for Al-Al electrode pair, while 90.5% of decolorization and 49.2% of COD reduction were obtained with operating cost of 0.20 €/㎥ treated wastewater for an Fe-Fe electrode pair. The amount of sludge production were highly related to type of the electrode materials. At the optimum conditions, the amount of sludge produced were 0.18 kg/㎥ and 0.28 kg/㎥ for Al-Al and Fe-Fe electrode pairs, respectively. High decolorization can be explained by the hydrophobic nature of the disperse dye, while limited COD removal was observed due to the high dissolved organic matter of the DDW based on auxiliary chemicals. Energy, electrode, and chemical consumptions and sludge handling were considered as major cost items to find a cost-effective and sustainable solution for EC. The contribution of each cost items on operating cost were determined as 10.0%, 51.1%, 30.5% and 8.4% for Al-Al, and they were also determined as 9.0%, 38.0%, 40.5% and 12.5% for Fe-Fe, respectively. COD reduction and decolorization were fitted to first-order kinetic rule.

Automatic Addition Control of the External Carbon Source by the Measurement of ORP in Biological Nitrogen Removal Process (생물학적 질소 제거공정에서 ORP 측정을 통한 외부탄소원의 자동 주입 제어)

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.21 no.3
    • /
    • pp.383-390
    • /
    • 2012
  • For the cost-effective biological nitrogen removal (BNR) process whose characteristics of influent have low COD/N ratios, the automatic control system for the addition of external carbon based on oxidation-reduction potential (ORP) data in an anoxic reactor has been developed. In this study, it was carried out with a pilot-scale Bardenpho process which was consisted of anoxic 1, aerobic 1, aerobic 2, anoxic 2, aerobic 3 tank and clarifier. Firstly, the correlation coefficient ($R^2$) of the dosage of external carbon source and ORP value was about 0.97. Consequently, the automatic control system using ORP showed that the dosage of external carbon source was decreased by about 20% compared with a stable dosage of 75 mg/L based on the COD/N ratio of the anoxic influent.

Carbon bead-supported copper-dispersed carbon nanofibers: An efficient catalyst for wet air oxidation of industrial wastewater in a recycle flow reactor

  • Yadav, Ashish;Verma, Nishith
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.448-460
    • /
    • 2018
  • Copper nanoparticle-doped and graphitic carbon nanofibers-covered porous carbon beads were used as an efficient catalyst for treating synthetic phenolic water by catalytic wet air oxidation (CWAO) in a packed bed reactor over 10-30 bar and $180-230^{\circ}C$, with air and water flowing co-currently. A mathematical model based on reaction kinetics assuming degradation in both heterogeneous and homogeneous phases was developed to predict reduction in chemical oxygen demand (COD) under a continuous operation with recycle. The catalyst and process also showed complete COD reduction (>99%) without leaching of Cu against a high COD (~120,000 mg/L) containing industrial wastewater.

Volume Reduction of Waste Water Sludge using Electrolysis (전기분해를 이용한 하수 슬러지 감량)

  • Lee, Byungheon;Bang, Myunghwan;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.264-270
    • /
    • 2006
  • In this research, volume reduction of activated sludge using electrolysis was studied to find an optimum condition using lab scale experiments. Wasted sludge was treated by electrolysis with controlling current density, chloride concentration, electrode distance, and reaction time. Volume of return sludge was reduced by 9.79% in average while maximum was 16.7%. Sludge volume reduction efficiency was affected by current density and reaction time. It was reversely proportional to the electrode distance. Especially current density was effective on the system performance significantly. Electric conductivity, salinity and COD were increased by electrolysis implying sludge disintegrated and converted to COD in part. An empirical equation for total solid removal efficiency by electrolysis was proposed by multiple linear regression analysis as: $TS_{rem}$(%) = 5.534 ${\times}$ current density (A/l) + 0.178 ${\times}$ reaction time (m) + 2.758.

A Study on the Stream Pollution Analysis (하천오염분석에 관한 연구)

  • 김건흥
    • Water for future
    • /
    • v.19 no.4
    • /
    • pp.321-328
    • /
    • 1986
  • Bottom sediment-river water samples were studied to determine the extent of biodegradable matter and to examine the reduction of COD, TKN and TOC by using of warburg and aerated batch reactor. Warburg studies were conducted to study the Oxygen Uptake Rates, Reaction Rate Constants and CBOD. Bacth reator studies were conducted to determine the reduction of COD, TKN and TOC. Results from the batch recator study indicate high concentration of COD in samples. Less than 10 precent of the Organic Carbon was found to be biodegradable in 48 hours of Warburg experiment. Appreciable Immediate Oxygen Demand of sediments suggests that dredging of the river bottom is likely to deplete dissolved significantly in the river water.

  • PDF

Chemical coagulation and sonolysis for total aromatic amines removal from anaerobically pre-treated textile wastewater: A comparative study

  • Verma, Akshaya K.;Bhunia, Puspendu;Dash, Rajesh R.
    • Advances in environmental research
    • /
    • v.3 no.4
    • /
    • pp.293-306
    • /
    • 2014
  • The present study primarily focuses on the evaluation of the comparative effect of chemical coagulation and ultrasonication for elimination of aromatic amines (AAs) present in anaerobically pretreated textile wastewater containing different types of dyes including azo dyes. Color and COD reduction was also monitored at the optimized conditions. The production of AAs was measured spectrophotometrically in the form of total aromatic amines (TAAs) and also verified with high performance liquid chromatography (HPLC) selectively. A composite coagulant, magnesium chloride (MC) aided with aluminium chlorohydrate (ACH) in an equal ratio (MC + ACH) was utilized during the coagulation process, which yielded 31% of TAAs removal along with 85% of color and 52% of COD reduction. At optimized power (200 W) and sonication time (5 h), an appreciable TAAs degradation efficiency (85%) was observed along with 51% color reduction and 62% COD removal using ultrasonication. The chromatographic data indicate that sulphanilic acid and benzidine types of aromatic amines were produced after the reductive cleavage of utilized textile dyes, which were effectively mineralized after ultrasonication. The degradation followed the first order kinetics with a correlation coefficient ($R^2$) of 0.89 and a first-order kinetic constant (k) of $0.0073min^{-1}$.