• 제목/요약/키워드: COD pollutants load

검색결과 76건 처리시간 0.019초

시계열 부하 곡선을 이용한 수체손상 평가 및 다변량 분석 -지석천 유역을 대상으로- (Evaluation of Impaired Waterbody and Multivariate Analysis Using Time Series Load Curve -in Jiseok Stream Watershed-)

  • 박진환;강태우;한성욱;백승권;강태구;유제철;김영석
    • 한국물환경학회지
    • /
    • 제33권6호
    • /
    • pp.650-660
    • /
    • 2017
  • In this study, pollutant emission characteristics by water damage period analyzed 11 items (water temperature, pH, DO, EC, BOD, COD, TOC, SS, T-N, T-P and flow) with load duration curve, time series load curve and factor analysis for three years (2014-2016). Load duration curve is applied to judge the level of impaired waterbody and estimate impaired level by pollutants such as BOD and T-P in this study depending on variation of stream flow. Water quality standard exceeded the flow of mid-range and low-range by flow condition evaluation using load duration curve. This watershed was influenced by point source more than non-point source. Cumulative excess rate of BOD and T-P kept water quality standard for all seasons (spring, summer, autumn and winter) except BOD 59% in spring. Water quality changes were influenced by pollutants of basic environmental treatment facilities and agricultural areas during spring and summer. Results of factor analysis were classified commonly first factor (BOD, COD, and TOC) and second factor (flow, water temperature and SS). Therefore, effects of artificial pollutants and maintenance water must be controlled seasonally and reduced relative to water damage caused by point pollution sources with effluent standard strengthened in the target watershed.

유량변화와 지류유입에 따른 금강의 수질 변화 (Influence of River Discharge Fluctuation and Tributary Mixing on Water Quality of Geum River, Korea)

  • 심무준;이수형
    • 한국물환경학회지
    • /
    • 제31권3호
    • /
    • pp.313-318
    • /
    • 2015
  • To study the influence of changes in river discharge on water quality of the main stem of the Geum River, we investigated variation of inflow load from tributaries with river discharge. We also studied the mixing behavior of pollutants during mixing of waters of the main stem and Gap Stream. For this study, we collected water quality data such as suspended solids (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) representing pre-monsoon, monsoon, and post-monsoon events of 2013 from a website of Water Information System. Based on inflow load, the Gap and Miho streams may be ones of tributaries which may largely influence water quality of main stem in upper river region. The Suksung and Nonsan Streams seemed to further affect water quality downstream. Results of modified EMMA indicated SS and TP may have another source(besides Gap Stream) at pre-monsoon, monsoon, and post-monsoon period. In contrast, TN and organic matter (BOD, COD, TOC) were conservative at pre-monsoon and post-monsoon. However, when river discharge increased, these pollutants may also came from unspecified non-point sources. Therefore, we need to attempt to find non-point sources for the pollutants in the main channel of upper Geum River region.

강우시 비점오염원의 오염부하 특성 - 벚나무 재배지를 대상으로 - (Loading Characteristics of Non-Point Source Pollutants by Rainfall - Case Study with Cherry Tree Plot -)

  • 강미아;최병우;유재정
    • 지질공학
    • /
    • 제20권4호
    • /
    • pp.401-407
    • /
    • 2010
  • 농업지역에서 발생한 오염부하량을 결정하기 위해 여러 토지이용형태 중에서 벚나무 재배지(단위 비점오염원)에서 발생하는 오염부하 특성을 조사하였다. 유출시 발생된 강우사상에서는 강우량과 유출수량의 상관계수가 0.5로 낮게 나타나 투수성을 예측할 수 없는 수준이었다. 강우량 20mm 미만인 경우에도 강우강도가 8.8 mm/hr 수준으로 높은 경우에는 유출이 발생하였으나 강우량이 47.4 mm로 많은 경우라 할지라도 긴 무강우일수와 약한 강우강도를 보인 경우에는 유출이 발생하지 않았다. 강우사상시 발생된 유출량과 SS, BOD, COD, TN 및 TP 오염부하량과의 상관계수는 SS에서 최저값 0.71을 보인 것 이외에는 모두 r ${\geq}$ 0.92로 매우 유의한 값을 나타냈다. 한편 SS와 다른 오염물질간의 오염부하상관성도 모두 r ${\geq}$ 0.73의로 유의한 값을 나타내었으므로 SS관리를 통해 유기물질과 영양염에 대한 제어도 가능함을 알 수 있다. 최고 TN농도는 시비활동에 의해 직접적 영향을 받은 Event의 유출수에서 발생하였다. 따라서 농경지에서 발생하는 유출수의 오염수준을 평가할 때에는 시비여부를 반드시 고려해야 할 것이다.

강우시 광역논으로부터의 유출부하 특성 (Characteristics of Storm Runoff Loadings from a Paddy Field Area)

  • 오승영;김진수;오광영
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.753-758
    • /
    • 1999
  • Concentration and discharge have been intensively monitored at the drainage canal in a paddy field area during storm-periods. Among 4 storm runoffs, the No. 2 and No. 3 runoff was in the fertilizer application period. The specific load-specific discharge equation L=aQ\ulcorner have different characteristics for the pollutants. The coefficient of b generally shows values of more than 1 for T-N, about 1 for COD\ulcorner, and less than 1 for T-P. For same specific discharge, No. 2 runoff shows higher specific load than other runoffs. For the coefficient of determination of the L-Q equation, COD\ulcorner is higher than T-N and T-P. The mean concentration of direct runoff, significantly depending on the storm events, is 0.6 to 8.3mg/ιfor T-N, 0.05 to 0.51 mg/ι for T-P, and 10.0 to 18.3 mg/ι for COD\ulcorner.

  • PDF

대구획 광역논에서의 오염부하특성과 원단위 (Characteristics and Unit Load of Pollutants at a Paddy Field Area with Large-Scaled Plots)

  • 김규성;김진수;오승영;윤춘경
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.390-393
    • /
    • 2001
  • Mass balance and unit load of pollutants were investigated at paddy field area during irrigation periods in 1999 and 2000. The amounts of irrigation water during irrigation periods were 3,690mm in 1999 and 3,160mm in 2000. The concentration of surface outflow is not so high as that of irrigation because 44% of irrigation water discharge without entering the paddy plots. The unit loads of pollutants during irrigation periods were estimated 19.2kg/ha for T-N, 0.29kg/ha for T-P and 47.5kg/ha for COD.

  • PDF

강릉 신리천의 수량 수질 분석 및 오염부하량 추정 (Water Ouantity/Quality Analysis and Pollutants Load Estimation in Sillicheon River, Jumunjin, Gangneung)

  • 조홍연;김창일;이달수
    • 한국해안해양공학회지
    • /
    • 제16권4
    • /
    • pp.196-205
    • /
    • 2004
  • 강릉 주문진항 입구로 유입되는 신리천 유역의 수질을 2003년 4월 2일부터 10월 29일까지 2주 간격으로 관측하였으며, 미계측 유역의 유량추정에 이용되는 TANK 모형을 이용하여 신리천의 하천수량을 일별로 산정하였다. 관측된 수질자료의 지점별$.$시기별 변화양상을 분석하였으며, 유역의 강수량과 하천수량과의 상관관계를 분석하였다. 분석결과, 신리하교 지점의 BOD 농도와 강우량과는 상관계수 0.75로 높은 상관성을 보였으며, SS농도와 2일 선행강우량과는 상관계수 0.36으로 약한 상관성을 보였다. COD, TN, TP 항목의 농도는 강수량, 하천유량과는 전혀 상관성이 없는 것으로 파악되었다. 따라서, 본 연구에서 제시한 BOD 항목의 유역 오염부하량은 신뢰할 만한 수준이며, SS 항목의 오염부하량도 정확도가 다소 감소하지만 전체적인 오염부하량 변화양상은 반영하는 것으로 평가되었다. 반면, COD, TN, TP 항목의 유역 오염부하량 추정결과는 평균 오염부하량 수치정도로 활용 할 수 있으나, 시기적인 변화양상을 파악하기 위해서는 인위적인 요소 및 토지이용 양상 등을 고려한 연구가 필요하다.

강우시 영농기와 비영농기의 광역논에서의 부유물질 (SS)과 COD의 유출특성 (SS and COD Runoff from a Rice Field Watershed during Storm Events in the Growing and Non-growing Seasons)

  • 이정범;이재용;김진수
    • 한국농공학회논문집
    • /
    • 제59권2호
    • /
    • pp.91-99
    • /
    • 2017
  • The objective of this research was to investigate runoff characteristics of suspended solid (SS) and chemical oxygen demand (COD) from a paddy field watershed during storm events in the growing and non-growing seasons. Average of event mean concentration (EMC) of pollutants were 56.9 mg/L for SS and 23.9 mg/L for COD in the non-growing season and 50.3 mg/L for SS and 11.9 mg/L for COD in the growing season. The average EMC of SS in the study area was much lower than that in the uplands irrespective of cultivation, suggesting that paddy fields control soil erosion. This may be because flooding and wet soil in the growing season, and rice straw residue and stubble on the topsoil in the non-growing season reduce soil erosion. The changing tillage practice from fall tillage to spring tillage avoids soil erosion due to shortening of the tilled fallow period. However, the average EMC of COD in the non-growing season was about twice as much that in the growing season likely due to the runoff of organics like rice straw residues. The relationship between SS and COD loads and stormwater runoff volume was expressed by power function. The exponent for SS was higher than that for COD, suggesting that SS load increased with stormflow runoff more than COD load did. The mean SS and COD loads per storm during the non-growing season were much lower than those in the growing season, and therefore non-point source pollution in the growing season should be managed well.

생태계 모델링을 이용한 부산연안해역 수질개선 예측 (Prediction of Water Quality Improvement by using Ecological Modelling in Busan Coastal Area)

  • 정우성;김진호;김동명
    • 해양환경안전학회지
    • /
    • 제23권5호
    • /
    • pp.524-531
    • /
    • 2017
  • 본 연구는 생태계 모델을 이용하여 부산연안으로 유입되는 부하량 삭감에 따른 해역의 수질개선 정도를 예측하였다. 모델링 결과에 의하면 COD, T-N, T-P 모두 수영만 연안과 낙동강 하구에서 뚜렷한 개선을 나타냈으며, 수영만을 제외한 만 중부에서 만 동쪽까지는 수질개선이 거의 나타나지 않았다. 이는, 부산연안이 남해에 위치한 다른 해역에 비해 개방형경계를 가지고 있어서, 물질교환이 빠르기 때문으로 판단된다. 수질개선을 위한 본 해역의 삭감 COD 부하량은 타 해역에 비해 적었고, 총 유입부하량에 대한 삭감비율 또한 작게 나타났다. 본 연구에 적용한 부하삭감량을 적용하면 수영만, 낙동강 하구부근에서 뚜렷한 수질개선효과를 얻을 수 있을 것으로 판단된다.

Assessment of Pollution Levels in the Jangsungcheon Watershed Using Load Duration Curves and Analysis of the Causes

  • Cho, Sohyun;Bak, Jonghun;Lee, Yeong Jae;Kim, Kyunghyun;Jung, Kang Young
    • 한국환경과학회지
    • /
    • 제28권10호
    • /
    • pp.873-885
    • /
    • 2019
  • In this study, a load duration curve was applied to the Jangseongcheon, one of the tributaries of the Yeongsan River, to assess whether the target water quality was achieved. In addition, pollution of the water body was investigated to develop and suggest the optimal management time with respect to polluted flow sections and monthly conditions. The average flow rates of sections JS1 and JS2 were $0.25m^3/s$ and $1.08m^3/s$, respectively. The BOD and T-P for water-quality standards at JS1 were rated at II, whereas the COD and TOC were rated at III, thus indicating a fair level of water quality. By contrast, the BOD at JS2 was rated at III, the T-P at IV, and the TOC at V, indicating poor water quality in this section. The load duration curve was plotted using the actual flow data measured in eight-day intervals for eight years from 2011 to 2018 at locations JS1 and JS2 in the Jangsungcheon Basin. In an assessment using the load duration curve on whether the target water quality was met at location JS1, all of the water quality parameters (BOD, COD, TOC, T-N, T-P, and SS) satisfied the target water quality. By contrast, at location JS2, parameters COD, TOC, T-N, and T-P exceeded target values by more than 50%, indicating the target water quality was not met. The discharge loads of locations JS1 and JS2 were analyzed to identify the reasons the target water quality was exceeded. Results revealed that the land system contributed considerably. Furthermore, the discharge load of JS2 accounted for more than 80% of the load on the entire basin, excluding that of JS1. Therefore, the best method for restraining the inflow of pollutants into the stream near location JS2 must be applied to manage the water quality of the Jangsungcheon.

포도밭에 대한 비점오염원 유출특성 해석 (Analysis of Nonpoint Sources Runoff Characteristic for the Vineyard Areas)

  • 윤영삼;이상협;유재정;이재관
    • 한국환경과학회지
    • /
    • 제20권3호
    • /
    • pp.361-372
    • /
    • 2011
  • This study analyzed the characteristics of stormwater runoff by rainfall type in orchard areas for two years. Effluents were monitored to calculate the EMCs and runoff loads of each pollutant. The runoff characteristics for nonpoint sources from vineyards were also inspected based on independent variables that affect runoff such as rainfall and rainfall intensity. The average runoff loads of each pollutant from vineyard_A and vineyard_B were found as follows: BOD 39.13 mg/$m^2$, COD 112.13 mg/$m^2$, TOC 54.98 mg/$m^2$, SS 1,681.8 mg/$m^2$, TN 18.29 mg/$m^2$, and TP 4.06 mg/$m^2$, which indicates that the COD's runoff load was especially high. The average EMCs from vineyard_A and vineyard_B, which represents the quality of rainfall effluent, were also analyzed: BOD 3.5 mg/L, COD 11.5 mg/L, TOC 5.2 mg/L, SS 211.7 mg/L, TN 1.774 mg/L, and TP 0.324 mg/L. This suggested that the COD, as an indicator of organic pollutants, is high in terms of EMCs as well. As rainfall increased, the EMCs of BOD, COD, TOC and SS kept turning upward. At a point, however, the high rainfall brought about dilution effects and began to push down the EMCs. Higher rainfall intensities led to the increase in the EMCs that displays the convergence of rainfall. Low rainfall intensities also raised pollutant concentrations, although the concentrations themselves were slightly different among pollutants.