• Title/Summary/Keyword: COD Removal

Search Result 1,129, Processing Time 0.027 seconds

Production of Photosynthetic Bacterial Cells of Rhodospirillum rubrum P17 from Soybean Curd Waste Water (두부공업폐수를 이용한 광합성세균 Rhodospirillum rubrum P17의 균체생산)

  • 강성옥;조경덕;임완진;조흥연;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.6
    • /
    • pp.622-627
    • /
    • 1993
  • Rhodospirillum rubrum P17 was used to investigate the pontential for the treatment of soybean curd waste and for the utilization of the biomass produced. The maximal biomass production and COD removal from the waste water were obtained at 30C, pH 7.0 under 2,500lux production and 50 rpm of agitation. The initial COD level of the soybean curd waste water was 3,240mg/l, and after 4 days of cultivation in batch culture, 3.46g/l of cells was obtained and COD level of the waste water reduced to 150mg/l (COD removal rate 95.4%).

  • PDF

Electric power generation from treatment of food waste leachate using microbial fuel cell

  • Wang, Ze Jie;Lim, Bong Su
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.157-161
    • /
    • 2017
  • Simultaneous treatment of food waste leachate and power generation was investigated in an air-cathode microbial fuel cell. A TCOD removal efficiency of $95.4{\pm}0.3%$ was achieved for an initial COD concentration of 2,860 mg/L. Maximum power density ranged was maximized at $1.86W/m^3$, when COD concentration varied between 60 mg/L and 2,860 mg/L. Meanwhile, columbic efficiency was determined between 1.76% and 11.07% for different COD concentrations. Cyclic voltammetric data revealed that the oxidation peak voltage occurred at -0.20 V, shifted to about -0.25 V. Moreover, a reduction peak voltage at -0.45 V appeared when organic matters were exhausted, indicating that reducible matters were produced during the decomposition of organic matters. The results showed that it was feasible to use food waste leachate as a fuel for power generation in a microbial fuel cell, and the treatment efficiency of the wastewater was satisfied.

Study on a Small-scale Wastewater Treatment System using Biological Aerated Filter (생물학적 호기성필터를 이용한 소규모 하수처리시스템에 관한 연구)

  • Park, Chan G.;Jo, Eun Y.;Kim, Young H.;Park, Sung J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.41-45
    • /
    • 2014
  • The biological aerated filter (BAF) reactor is regarded as an effective biological wastewater treatment method. It can remove pollutants by carrier filtration and biodegradation. Due to its advantages, which include high biomass retention, tolerance to toxicity, excellent removal efficiency, and slurry separation, BAF has been widely used to remove COD, $NH_4{^+}-N$, phosphorus, and other harmful organic substances. In this study, the BAF reactor was used to remove organic contaminants of domestic wastewater of Korea at both the benchand pilot-scale. The main objectives of this study are to: (i) investigate the removal efficiency of organic contaminants (ex. COD, nitrate, phosphorus) in BAF reactors at both scales; (ii) characterize the small-scale wastewater treatment plant using the BAF reactor. The concentration of COD in the influent increased from 69 to 246 mg/L. During the operation period, the final effluent concentration of COD remained maximum 4.0 mg/L, and the average removal efficiency was above 88%. The present study investigated the removal efficiencies of COD, TN, TP and $NH_4{^+}-N$ from smelting wastewater by BAF system. When treating wastewater in both bench and pilot-scale reactors, the BAF worked well.

Effect of Indirect Oxidation on the Design of Sewage/wastewater Reuse System with an Electrolysis Reactor (전기분해 반응조의 간접산화 효과가 하.폐수 재활용 시스템 설계에 미치는 영향)

  • Shin, Choon-Hwan
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.116-121
    • /
    • 2009
  • In this paper, we investigated the effect of an indirect oxidation zone in an electrolysis reactor that used Ti/$IrO_2$ as the anode and SUS 316L as the cathode. Based on our preliminary results, the electrolysis reactor was operated with pole plate interval of 6 mm, current density 1.0 $A/dm^2L$ and electrolyte concentration 15%. The removal efficiency, COD (chemical oxygen demand), was additionally increased by 55% and 12.5${\sim}$15.0% in the direct and indirect oxidation zones, respectively. The removal efficiencies of T-N (total nitrogen) and T-P (total phosphorus) were found to be 88% and 75%, respectively. It was shown that the additional effect of the indirect oxidation zone on the removal was nearly negligible. Also, as the removal of COD,T-N and T-P took place during the initial2${\sim}$5 days of reaction, it was concluded that there was no need to extend the retention time of the electrolysis reactor.

Effects of Microwave Pretreatment on Mesophilic Anaerobic Digestion for Mixture of Primary and Secondary Sludges Compared with Thermal Pretreatment

  • Park, Woon-Ji;Ahn, Johng-Hwa
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • This work experimentally determined the effect of thermal and microwave pretreatments on the anaerobic digestion of mixtures of municipal primary and secondary sludges in semi-continuous mesophilic digesters at hydraulic retention times (HRT) of 20, 15, 10, 7, and 5 days. The ratio of soluble chemical oxygen demand (COD) to total COD in thermally pretreated and microwaved sludges at $80^{\circ}C$ was 2.7 and 3.2 times higher than that of raw sludge, respectively. The volatile solids (VS) and COD removal efficiencies in all three digesters fed with raw (control), thermally pretreated (TM), and microwaved (MW) sludges decreased as the HRT was reduced. The highest relative improvement in VS removal compared to the control occurred at the HRT of 5 days in the TM and MW (29 and 41% higher than the control, respectively). At this HRT, improvement in the COD removal efficiencies in the TM and MW compared to the control was 28 and 53%, respectively. Improvements in biogas production compared with the control increased in both the TM and MW as the HRT was reduced to 5 days. The relative improvement in daily biogas production compared to the control from the TM and MW was 33 and 53% higher than the control at the HRT of 5 days, respectively. The results show that microwave pretreatment is more effective than thermal pretreatment in increasing the solubilization degree and mesophilic anaerobic biodegradability of sewage sludge.

Fenton난s Reagent Oxidation of Refractory Organics in Petrochemical Plant Effluent (석유화학공장 방류수내 난분해성 유기물의 Fenton 산화처리)

  • Lee, Kyu-Hoon;Jung, Dae-Young;Park, Tae-Joo
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.51-59
    • /
    • 1996
  • The purpose of this study was to evaluate the partial oxidation of the biological treatment plant effluents using Fenton's reagent as a pretreatment step prior to a tertiary biological oxidation of these effluents. Fenton's reagent was evaluated as a pretreatment process for inhibitory or refractory organics. Based on the Fenton oxidation system, the petrochemical wastewater treatment plant effluent was shown to have significant improvement in toxicity after oxidation with hydrogen peroxide. For example, at ranee of 42 ∼ 184 mg/L COD of petrochemical plant effluents, the COD removal efficiencies were from 38.2% to 60.1% after reaction with hydrogen peroxide 200 mg/L and Fe2+ 100 mg/L and reaction time was 30 minutes. The total TOC reduction were about 15.8∼22.4% with same test condition and difference between the overall removal rate and BOD/COD ratio after Fenton's oxidation estabilished in the biodegradation and otherwise meets the discharge standard or reuse for cooling tower make-up water.

  • PDF

Studies on the Biological Treatment of Waste Water from Acetaldehyde Plant (아세트 알데히드(특수산업) 폐수의 생물학적 처리)

  • 정기택;서승교;송형익;박임동;방광웅
    • Korean Journal of Microbiology
    • /
    • v.25 no.4
    • /
    • pp.333-338
    • /
    • 1987
  • In order to establish the biological treatment system which can be used for treatment of waste aster from acetaldehyde plant, it was investigated optimum nutrient requirements and growth conditions by mixed culture of Micrococcus roseus AW-6, Micrococcus luteus AW-22, Microbacterium lacticum AW-38 and Microbacterium laevaniformans AW-41 as well as the effect of coagulants and neutralization reagents. Also, it was carried out the continuous culture as well as batch culture to treat the waste water by mixed culture of these strains. The COD removal rate was reached to maximum state for 96hrs culture at pH7.0 and $30^{\circ}C$ NaOH as the neutralization reagents was the most effective, but the coagulants had no effect on the COD remonal rate and the optimum dilution times for treatment were 10 fold. The COD removal rate was also increased by supplimenting 200 ppm $NH_{2}NO_{3}$, 50 ppm $KH_{2}PO_{4}$, 15 ppm $CaCl_{2}$ and 1 ppm $MgSO_{4} \cdot 7H_{2}O $ as additional nutrients. The removal rate coefficient $K_{1}$ on the batch culture was $4.5\times 10^{-6}$, and the detention time for BOD removal rate of 85% was approximately 45hrs. The COD of waste water was reduced to 15% of its initial value by the continuous culture. The COD and BOD of the effluents were to be about 60 ppm and 40 ppm, respectively, and final pH was 7.0.

  • PDF

Electrochemical Treatment of COD and T-N in Wastewater from Flue Gas Desulfurization Process (전해처리법에 의한 탈황폐수 중의 COD 및 총 질소 제거)

  • Cha, Go-Eun;Noh, Da-Ji;Seo, Jeong-Hyeon;Lim, Jun-Heok;Lee, Tae-Yoon;Lee, Jea-Keun
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1073-1078
    • /
    • 2013
  • This paper presents the results of the electrochemical treatment of chemical oxygen demand(COD) and total nitrogen(T-N) compounds in the wastewater generated from flue gas desulfurization process by using a lab-scale electrolyzer. With the increase in the applied current from 0.6 Ah/L to 1.2 Ah/L, the COD removal efficiency rapidly increases from 74.5% to 96%, and the T-N removal efficiency slightly increases from 37.2% to 44.9%. Therefore, it is expected that an electrochemical treatment technique will be able to decrease the amount of chemicals used for reducing the COD and T-N in wastewater of the desulfurization process compared to the conventional chemical treatment technique.

Treatment of Industrial Wastewater by Electrochemical Method (전기화학적방법을 이용한 산업폐수 처리)

  • Cho, Ju-Sik;An, Myoung-Sub;Lee, Hong-Jae;Heo, Jae-Seon;Sohn, Bo-Kyoon;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.134-141
    • /
    • 2000
  • For electrochemical treatment of industrial wastewater, the effects of voltage, distance between electrodes, initial pH and NaCl concentrations on removal of pollutants were investigated in a batch electrolysis system. Temperature and pH in electrochemical reactor increased with increase in supplied voltage, but no significant change in EC was found. Removal of COD, turbidity, T-N and T-P were also enhanced with increase in the voltage. On the conditions of short distances between electrodes and long electrochemical reaction times, it was found that COD and T-N were very effectively removed in the system. Regardless of the distances, more than 80% of turbidity and T-P were removed at the beginning of reaction. When initial pH of the wastewater was about 7, the highest efficiency of COD removal was found in the system. On the other hand, removal efficiency of turbidity was unlikely affected by initial pH of the wastewater. T-N removal was increased with increase in initial pH. T-P was successfully removed in the pH range of 5 to 9 with varying removal efficiency of 79 to 96% after 2 minutes of electrochemical reaction time. Addition of NaCl into the electrochemical reactor increased removal efficiency of electrochemical treatment. The highest removal efficiency of COD and T-P, turbidity and T-N was obtained at NaCl concentrations of 500mg/L, 1,000 mg/L and 500mg/L, respectively.

  • PDF

The Effect of Solubilization Pretreatment Process on Anaerobic Digestion of Waste Activated Sludge (전처리 가용화 공정이 잉여슬러지 혐기성 소화효율에 미치는 영향)

  • Yoo, Ho-Sik;Ahn, Seyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.35-43
    • /
    • 2016
  • COD properties of waste activated sludge (WAS) were investigated for various solubilization rate of mechanical pretreatment method in anaerobic digestion process. Inert COD was 37.0% of total COD in untreated WAS. Particulate biodegradable COD was converted to soluble biodegradables and particulate unbiodegradables as solubilization was processed. Particulate unbiodegradable portion of COD in WAS can be increased as particulate biodegradable portion is decreased in case of relatively long SRT of biological treatment. Thus, COD properties of WAS should be investigated in case of relatively low particulate biodegradable COD, because of possible low effect of solubilization. COD removal rate in anaerobic digester was enhanced as much as 2.1% and 15.1% for solubilization rate 5% and 35% due to pretreatment, respectively. COD removal rate was increased from 25% to 40%, and methane gas generation was increased from $607m^3/d$ to $907m^3/d$ as particulate COD of WAS was solubilized to 35% in pretreatment facilities.