• Title/Summary/Keyword: COD/IL

Search Result 194, Processing Time 0.018 seconds

Application of Dissolved Air Flotation Technique to Improve Eutrophic Reservoir Water Quality (가압부상법을 이용한 부영양저수지의 수질개선)

  • Kim, Ho-Sub;Jung, Dong-Il;Lee, Il-Kuk;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.372-381
    • /
    • 2005
  • This study was conducted to test the efficiency of water quality improvement using the dissolved air flotation (DAF) technique in a shallow eutrophic reservoir. The application of DAF was followed by the addition of a chemical coagulant (poly aluminum chloride; PAC). The experiment was conducted in the mesocosm scale (wide ${\times}$ length ${\times}$ depth: 6 m ${\times}$ 6 m ${\times}$ 3 m). Suspended solids (SS) and volatile SS (VSS) concentration decreased by 54 ${\sim}$ 71% and 57 ${\sim}$ 79% of the initial concentrations, respectively. Total phosphorus and Chl- a concentration also decreased by 74 ${\sim}$ 92% and 54 ${\sim}$ 98%, respectively. BOD decreased by>86% while COD decrease ranged 29 ${\sim}$ 63%. Dissolved inorganic P (DIP) and dissolved total P (DTP) concentration decreased by 34 ${\sim}$ 88% and 62 ${\sim}$ 88%, respectively. After DAF application further onto the sediment, DIP-release rates from the sediment decreased by 17% (0.82 ${\to}$ 0.68 mg $m^{-2}$$day^{-1}$ in the oxic condition and 23% (2.27 ${\to}$ 1.76 mg $m^{-2}$$day^{-1}$) in the anoxic condition, compared to the release rate from the untreated sediment. DTP-release rate from both the oxic and anoxic sediments also decreased by 33% (5.62 ${\to}$ 3.78 mg $m^{-2}$$day^{-1}$) and 20% (6.23 ${\to}$ 4.99 mg $m^{-2}$$day^{-1}$), respectively. These results suggest that the DAF application both to the water column and onto the sediment be effective to improve water quality by removing particulate matters in the water column as well as reducing P-release from the sediment.

The Limnological Survey of a Coastal Lagoon in Korea (2): Lake Hyangho (동해안 석호의 육수학적 조사(2): 향호)

  • Kwon, Sang-Yong;Lee, Jae-Il;Kim, Dong-Jin;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.1-11
    • /
    • 2004
  • The limnological characteristics of a coastal lagoon were studied in Lake Hyangho, one of a series of brackish lagoons along the eastern coast of Korea. Phytoplankton community structure, physical factors, and chemical factors were surveyed from May 1998 through November 2002 on a two-month interval basis. Temperature, salinity, Secchi disc transparency, TN, TP, organic matter content of sediment, chlorophyll a concentration, dominant phytoplankton species, and phytoplankton cell density were measured. Salinity gradient was formed between the overlying freshwater stream water and the permeated seawater at the bottom. The chemocline was persistent at the depth of 2 ${\sim}$ 5 m that caused discontinuities of salinity, DO, and temperature profiles. The inversion of vertical temperature profiles with higher temperature in deeper layer was observed in early winter. Secchi disc transparency was very low with the range of 0.1 to 1.1m. TP, TN, and Chl. a concentration in the epilimnion was 0.011 ${\sim}$ 0.238 mgP $L^{-l}$, 0.423 ${\sim}$ 2.443 mgN $L^{-l}$, and 0.7 ${\sim}$ 145.2 mg $m^{-3}$, respectively. Sediment was composed of silt and coarse silt. COD, TP, and TN content of dry sediment were 19.7 ${\sim}$ 73.3 mg$O_2\;g^{-1}$, 0.61 ${\sim}$ 1.32 mgP $g^{-l}$ and 0.64 ${\sim}$ 0.88 mgN $g^{-l}$, respectively. Dominant phytoplankton species were chlorophytes (Ankistrodesmus falcatus) and cyanobacteria (Oscillatoria sp. and Merismopedia tennuissima). The total cell density was in the range of 560 ${\sim}$ 35,255 cells $mL^{-l}$.

Groundwater and Soil Environment of Plastic Film House Fields around Central Part of Korea (우리나라 중부지방의 시설원예 토양 및 지하수 환경)

  • Kim, Jin-Ho;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;Yun, Sun-Gang;Jung, Yeun-Tae;Kwun, Soon-Kuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.109-116
    • /
    • 2002
  • The objective of this study was to know the qualities of soil and shallow groundwater in plastic film house fields around Central Part of Korea. The study was conducted at 11 sites in Suweon, Hwasung, Pyungtaek, Yongin and Chuncheon through May to August in 1999. Soil textures of plastic films house were mainly sandy loam or loam. Electric conductivity and organic matter content of surface soils mostly exceeded the critical levels for crop production. Average concentration of $NO_3-N$ in the sha]low groundwater was 19.1 mg/L, and it reached almost the limiting level of agricultural groundwater quality (20 mg/L). Moreover about 36% of survey sites exceeded the limiting level of agricultural groundwater quality. Sulfate concentrations also at some sites exceeded agricultural groundwater quality limit level (50 mg/L). Nitrate-N, one of the most important factors in the groundwater quality, had positive correlations with other ions in foundwater.

River Water Quality Impact Assessment in an Intensive Livestock Farming Area During Rainfall Event using Physicochemical characteristics and Nitrogen Stable Isotopes (이화학적 특성과 질소 안정동위원소비를 활용한 강우시 가축사육 밀집 지역의 하천 수질 영향 평가)

  • Ryu, Hong-Duck;Baek, Un-Il;Kim, Sun-Jung;Kim, Deok-Woo;Kim, Chansik;Kim, Min-Seob;Shin, Dongseok;Lee, Jae-Kwan;Chung, Eu Gene
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.7-18
    • /
    • 2019
  • This study aimed to assess the impact of livestock excreta discharged from an Intensive Livestock Farming Area (ILFA) on river water quality during a rainfall event. The Bangcho River, which is one of the 7 tributaries in the Cheongmi River watershed, was the study site. The Cheongmi River watershed is the second largest area for livestock excreta discharge in Korea. Our results clearly showed that, during the rainfall event, the water quality of the Bangcho River was severely deteriorated due to the COD, $NH_4-N$, T-N, $PO_4-P$, T-P, and heavy metals (Cu, Zn, and Mn) in the run-off from nearby farmlands, where the soil comprised composted manure and unmanaged livestock excreta. In addition, stable isotope analysis revealed that most of nitrogen ($NH_4-N$ and $NO_3-N$) in the run-off was from the ammonium and nitrate in the livestock excreta. The values of ${\delta}^{15}N_{NH4}$ and ${\delta}^{15}N_{NO3}$ for the Bangcho River water sample, which was obtained from the downstream of mixing zone for run-off water, were lower than those for the run-off water. This indicates that there were other nitrogen sources upstream river in the river. It was assumed from ${\delta}^{15}N_{NH4}$ and ${\delta}^{15}N_{NO3}$ stable isotope analyses that these other nitrogen sources were naturally occurring soil nitrogen, nitrogen from chemical fertilizers, sewage, and livestock excreta. Therefore, the use of physicochemical characteristics and nitrogen stable isotopes in the water quality impact assessment enabled more effective analysis of nitrogen pollution from an ILFA during rainfall events.