• Title/Summary/Keyword: COCOSYS

Search Result 2, Processing Time 0.117 seconds

COMBINED ANALYTICAL AND EXPERIMENTAL INVESTIGATIONS FOR LWR CONTAINMENT PHENOMENA

  • Allelein, Hans-Josef;Reinecke, Ernst-Arndt;Belt, Alexander;Broxtermann, Philipp;Kelm, Stephan
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.249-260
    • /
    • 2012
  • Main focus of the combined nuclear research activities at Aachen University (RWTH) and the Research Center J$\ddot{u}$lich (J$\ddot{U}$LICH) is the experimental and analytical investigation of containment phenomena and processes. We are deeply convinced that reliable simulations for operation, design basis and beyond-design basis accidents of nuclear power plants need the application of so-called lumped-parameter (LP) based codes as well as computational fluid dynamics (CFD) codes in an indispensable manner. The LP code being used at our institutions is the GRS code COCOSYS and the CFD tool is ANSYS CFX mostly used in German nuclear research. Both codes are applied for safety analyses especially of beyond design accidents. Focal point of the work is containment thermal-hydraulics, but source term relevant investigations for aerosol and iodine behavior are performed as well. To increase the capability of COCOSYS and CFX detailed models for specific features, e.g. recombiner behavior including chimney effect, building condenser, and wall condensation are developed and validated against facilities at different scales. The close connection between analytical and experimental activities is notable and identifying feature of the RWTH/J$\ddot{U}$LICH activities.

ANALYSIS OF THE NODALISATION INFLUENCE ON SIMULATING ATMOSPHERIC STRATIFICATIONS IN THE EXPERIMENT THAI TH13 WITH THE CONTAINMENT CODE SYSTEM COCOSYS

  • Burkhardt, Joerg;Schwarz, Siegfried;Koch, Marco K.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1135-1142
    • /
    • 2009
  • The activities related to this paper are to investigate the influence of nodalisation on simulating atmospheric stratification in the THAI experiment TH13 (ISP-47) with the German containment code COCOSYS. This article focuses on different nodalisations of the vessel dome, where an atmospheric stratification occurred due to a high helium content. The volume of the dome was divided into several levels that were varied horizontally into different geometries. These geometries differ in the number of zones as well as in the existence of zones that enable the direct rise of an ascending steam plume into the vessel dome. Additionally, the vertical subdivision of the vessel dome was increased to simulate density gradients in a more detailed way. It was pointed out that the proper simulation of atmospheric stratifications and their dissolution depends on both a suitable horizontal as well as vertical nodalisation scheme. Besides, the treatment of fog droplets has an influence if their settlement is not simulated correctly. This report gives an overview of the gained experience and provides nodalisation requirements to simulate atmospheric stratifications and their proper dissolution.