• Title/Summary/Keyword: COCO data set

Search Result 8, Processing Time 0.018 seconds

Research on Human Posture Recognition System Based on The Object Detection Dataset (객체 감지 데이터 셋 기반 인체 자세 인식시스템 연구)

  • Liu, Yan;Li, Lai-Cun;Lu, Jing-Xuan;Xu, Meng;Jeong, Yang-Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.111-118
    • /
    • 2022
  • In computer vision research, the two-dimensional human pose is a very extensive research direction, especially in pose tracking and behavior recognition, which has very important research significance. The acquisition of human pose targets, which is essentially the study of how to accurately identify human targets from pictures, is of great research significance and has been a hot research topic of great interest in recent years. Human pose recognition is used in artificial intelligence on the one hand and in daily life on the other. The excellent effect of pose recognition is mainly determined by the success rate and the accuracy of the recognition process, so it reflects the importance of human pose recognition in terms of recognition rate. In this human body gesture recognition, the human body is divided into 17 key points for labeling. Not only that but also the key points are segmented to ensure the accuracy of the labeling information. In the recognition design, use the comprehensive data set MS COCO for deep learning to design a neural network model to train a large number of samples, from simple step-by-step to efficient training, so that a good accuracy rate can be obtained.

Investigation of image preprocessing and face covering influences on motion recognition by a 2D human pose estimation algorithm (모션 인식을 위한 2D 자세 추정 알고리듬의 이미지 전처리 및 얼굴 가림에 대한 영향도 분석)

  • Noh, Eunsol;Yi, Sarang;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.285-291
    • /
    • 2020
  • In manufacturing, humans are being replaced with robots, but expert skills remain difficult to convert to data, making them difficult to apply to industrial robots. One method is by visual motion recognition, but physical features may be judged differently depending on the image data. This study aimed to improve the accuracy of vision methods for estimating the posture of humans. Three OpenPose vision models were applied: MPII, COCO, and COCO+foot. To identify the effects of face-covering accessories and image preprocessing on the Convolutional Neural Network (CNN) structure, the presence/non-presence of accessories, image size, and filtering were set as the parameters affecting the identification of a human's posture. For each parameter, image data were applied to the three models, and the errors between the actual and predicted values, as well as the percentage correct keypoints (PCK), were calculated. The COCO+foot model showed the lowest sensitivity to all three parameters. A <50% (from 3024×4032 to 1512×2016 pixels) reduction in image size was considered acceptable. Emboss filtering, in combination with MPII, provided the best results (reduced error of <60 pixels).

Dataset Construction of Taekwondo Beginner AI (태권도 초심자를 위한 AI의 DataSet 구축)

  • Cho, Kyu Cheol;Kim, Ju Yeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.249-252
    • /
    • 2022
  • 세계 태권도 연맹은 국제 축구 연맹의 가입국과 동일한 수의 가입국을 보유할 만큼 태권도는 점점 더 세계적으로 나아가고 있다. 하지만 태권도의 교육방법은 예전과 다르지 않다. 도장의 관장이나 사범이 직접 자세를 눈으로 보고 판단하여 지도해야 한다. 본 연구는 기술이 발전하고 변화함에 따라 태권도를 조금 더 다양하고 흥미롭게 배울 수 있는 방법을 개발하고자 진행하였다. 본 논문에서는 피사체 모델을 촬영하여 이미지를 추출하고 이미지에서 사람의 관절 KeyPoint를 라벨링 한 후 이를 바탕으로 COCO 형식의 DataSet을 만들어낸다. 이후 이 DataSet을 기계에 학습을 시킨다면 초심자를 위한 교육용 태권도 AI가 만들어질 수 있다. 또한, 기계학습 이후 이 AI를 실제 교육현장에 적용하여 교육과정에 직접 사용할 수 있으며 이 AI를 바탕으로 교육용 게임 개발 등 다양한 방면으로 활용할 수 있을 것이라고 기대한다.

  • PDF

Lightening of Human Pose Estimation Algorithm Using MobileViT and Transfer Learning

  • Kunwoo Kim;Jonghyun Hong;Jonghyuk Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.17-25
    • /
    • 2023
  • In this paper, we propose a model that can perform human pose estimation through a MobileViT-based model with fewer parameters and faster estimation. The based model demonstrates lightweight performance through a structure that combines features of convolutional neural networks with features of Vision Transformer. Transformer, which is a major mechanism in this study, has become more influential as its based models perform better than convolutional neural network-based models in the field of computer vision. Similarly, in the field of human pose estimation, Vision Transformer-based ViTPose maintains the best performance in all human pose estimation benchmarks such as COCO, OCHuman, and MPII. However, because Vision Transformer has a heavy model structure with a large number of parameters and requires a relatively large amount of computation, it costs users a lot to train the model. Accordingly, the based model overcame the insufficient Inductive Bias calculation problem, which requires a large amount of computation by Vision Transformer, with Local Representation through a convolutional neural network structure. Finally, the proposed model obtained a mean average precision of 0.694 on the MS COCO benchmark with 3.28 GFLOPs and 9.72 million parameters, which are 1/5 and 1/9 the number compared to ViTPose, respectively.

Cascade Network Based Bolt Inspection In High-Speed Train

  • Gu, Xiaodong;Ding, Ji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3608-3626
    • /
    • 2021
  • The detection of bolts is an important task in high-speed train inspection systems, and it is frequently performed to ensure the safety of trains. The difficulty of the vision-based bolt inspection system lies in small sample defect detection, which makes the end-to-end network ineffective. In this paper, the problem is resolved in two stages, which includes the detection network and cascaded classification networks. For small bolt detection, all bolts including defective bolts and normal bolts are put together for conducting annotation training, a new loss function and a new boundingbox selection based on the smallest axis-aligned convex set are proposed. These allow YOLOv3 network to obtain the accurate position and bounding box of the various bolts. The average precision has been greatly improved on PASCAL VOC, MS COCO and actual data set. After that, the Siamese network is employed for estimating the status of the bolts. Using the convolutional Siamese network, we are able to get strong results on few-shot classification. Extensive experiments and comparisons on actual data set show that the system outperforms state-of-the-art algorithms in bolt inspection.

Surface Water Mapping of Remote Sensing Data Using Pre-Trained Fully Convolutional Network

  • Song, Ah Ram;Jung, Min Young;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.423-432
    • /
    • 2018
  • Surface water mapping has been widely used in various remote sensing applications. Water indices have been commonly used to distinguish water bodies from land; however, determining the optimal threshold and discriminating water bodies from similar objects such as shadows and snow is difficult. Deep learning algorithms have greatly advanced image segmentation and classification. In particular, FCN (Fully Convolutional Network) is state-of-the-art in per-pixel image segmentation and are used in most benchmarks such as PASCAL VOC2012 and Microsoft COCO (Common Objects in Context). However, these data sets are designed for daily scenarios and a few studies have conducted on applications of FCN using large scale remotely sensed data set. This paper aims to fine-tune the pre-trained FCN network using the CRMS (Coastwide Reference Monitoring System) data set for surface water mapping. The CRMS provides color infrared aerial photos and ground truth maps for the monitoring and restoration of wetlands in Louisiana, USA. To effectively learn the characteristics of surface water, we used pre-trained the DeepWaterMap network, which classifies water, land, snow, ice, clouds, and shadows using Landsat satellite images. Furthermore, the DeepWaterMap network was fine-tuned for the CRMS data set using two classes: water and land. The fine-tuned network finally classifies surface water without any additional learning process. The experimental results show that the proposed method enables high-quality surface mapping from CRMS data set and show the suitability of pre-trained FCN networks using remote sensing data for surface water mapping.

Pyramid Feature Compression with Inter-Level Feature Restoration-Prediction Network (계층 간 특징 복원-예측 네트워크를 통한 피라미드 특징 압축)

  • Kim, Minsub;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.283-294
    • /
    • 2022
  • The feature map used in the network for deep learning generally has larger data than the image and a higher compression rate than the image compression rate is required to transmit the feature map. This paper proposes a method for transmitting a pyramid feature map with high compression rate, which is used in a network with an FPN structure that has robustness to object size in deep learning-based image processing. In order to efficiently compress the pyramid feature map, this paper proposes a structure that predicts a pyramid feature map of a level that is not transmitted with pyramid feature map of some levels that transmitted through the proposed prediction network to efficiently compress the pyramid feature map and restores compression damage through the proposed reconstruction network. Suggested mAP, the performance of object detection for the COCO data set 2017 Train images of the proposed method, showed a performance improvement of 31.25% in BD-rate compared to the result of compressing the feature map through VTM12.0 in the rate-precision graph, and compared to the method of performing compression through PCA and DeepCABAC, the BD-rate improved by 57.79%.

Parallel Dense Merging Network with Dilated Convolutions for Semantic Segmentation of Sports Movement Scene

  • Huang, Dongya;Zhang, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3493-3506
    • /
    • 2022
  • In the field of scene segmentation, the precise segmentation of object boundaries in sports movement scene images is a great challenge. The geometric information and spatial information of the image are very important, but in many models, they are usually easy to be lost, which has a big influence on the performance of the model. To alleviate this problem, a parallel dense dilated convolution merging Network (termed PDDCM-Net) was proposed. The proposed PDDCMNet consists of a feature extractor, parallel dilated convolutions, and dense dilated convolutions merged with different dilation rates. We utilize different combinations of dilated convolutions that expand the receptive field of the model with fewer parameters than other advanced methods. Importantly, PDDCM-Net fuses both low-level and high-level information, in effect alleviating the problem of accurately segmenting the edge of the object and positioning the object position accurately. Experimental results validate that the proposed PDDCM-Net achieves a great improvement compared to several representative models on the COCO-Stuff data set.