• 제목/요약/키워드: CO2 gas weld

검색결과 64건 처리시간 0.025초

1000MPa급 DP강의 Nd:YAG 레이저 용접부의 기계적 성질과 성형성에 미치는 용접 속도의 영향 (Effect of Welding Speed on Mechanical Properties and Formability in Nd:YAG Laser Welds of 1000MPa Grade DP Steel)

  • 장진영;최우남;정병훈;강정윤
    • Journal of Welding and Joining
    • /
    • 제27권2호
    • /
    • pp.69-75
    • /
    • 2009
  • The effects of welding speed were investigated on penetration characteristics, defects and mechanical properties including formability test in Nd:YAG laser welded 1000MPa grade DP steels. A shielding gas was not used and bead-on-plate welding was performed with various welding speeds at 3.5kW laser power. Defects of surface and inner beads were not observed in all welding speeds. As the welding speed increased, the weld cross-section varied from the trapezoid having wider bottom bead, through X type, finally to V type in partial penetration range of welding speeds. The characteristic of hardness distribution was also investigated. The center of HAZ had maximum hardness, followed by a slight decrease of hardness as approaching to FZ. Significant softening occurred at the HAZ near BM. Regardless of the welding speed, the weld showed approximately the same hardness distribution. In the perpendicular tensile test with respect to the weld direction, all specimens were fractured at the softening zone. In the parallel tensile test to the weld direction, the first crack occurred at weld center and then propagated into the weld. Good formability over 80% was taken for all welding conditions.

다구찌 방법을 이용한 $CO_2$ 자동용접의 공정변수 분석 (An Analysis for Process Parameters in the Automatic $CO_2$ Welding Using the Taguchi Method)

  • 김인주;박창언;김일수;성백섭;손준식;유관종;김학형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.596-599
    • /
    • 2004
  • The robotic $CO_2$ welding is a manufacturing process to produce high quality joints for metal and it could provide a capability of full automation to enhance productivity. Despite the widespread use in the various manufacturing industries, the full automation of the robotic $CO_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this research, an attempt has been made to develop an intelligent algorithm to predict the weld geometry (top-bead width, top-bead height, back-bead width and back-bead height) as a function of key process parameters in the robotic $CO_2$welding. To achieve this above objective, Taguchi method was employed using five different process parameters (tip gap, gas flow rate, welding speed, arc current, welding voltage) as a guide for optimization of process parameters.

  • PDF

고출력 $CO_2$레이저 용접에서 키홀의 불안정으로 발생한 기공의 절감방법 (Reduction Method of Porosity Formed by Instability of Keyhole in High Power $CO_2$ Laser Welding)

  • 김정일;조민현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권4호
    • /
    • pp.464-471
    • /
    • 2002
  • Porosity formation in partial penetration welds by high power lasers is a serious problem in industry. There are two main causes that induce porosity formation. One form of porosity is due to gases (e.g. hydrogen, oxygen) dissolving into the weld pool because of the high temperature and then the rapid solidification traps gases as a bubble in the weld metal. The second problem is voids formed by the keyhole collapsing due to unstable keyhole fluid dynamics. The voids that form at the bottom of the keyhole are relatively large and irregular in shape compared to the gas bubbles; this void formation is the primary concern in this paper. The reduction of voids formed by keyhole collapse is achieved by improving the stability of keyhole. Two methods to improve keyhole stability are discussed in this paper: pulse modulation and beam incident angle. Pulse modulation of the laser beam was performed between 100 Hz and 500 Hz to find out the optimum frequency for the keyhole dynamics. The incident beam angle changed the impact angle of the laser beam to the work surface in a range of 0 to 25 degrees. Glycerin in a semi-solidified state is used as a medium for performing the welding because its transparency allows of visualization of the keyhole.

로봇 $CO_2$ 아크용접 공정변수를 제어하기 위한 수학적 모델 개발 (Development of Mathematical Models for Control of Process Parameters for Robotic $CO_2$ Arc Welding)

  • 임동엽;박창언;김일수;정영재;손준식;이계정
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1997년도 특별강연 및 추계학술발표 개요집
    • /
    • pp.229-233
    • /
    • 1997
  • The demand to increase productivity and quality, the shortage of skilled labour and the strict health and safety requirements have led to the development of the automated welding process to deal with many of the present problems of welded fabrication. To make effective use of the automated arc welding process, it is imperative that a mathematical model, which can be programmed easily and fed to the robot, should be developed. The objectives of the paper are to develop the mathematical equations (linear and curvilinear) for study of the relationship between process variables and bead geometry by employing a standard statistical package program, SAS and to choose the best model for automation of the $CO_2$ gas arc welding process. Mathematical models developed from experimental results can be employed to control the process variables in order to achieve the desired bead geometry based on weld quality criteria. Also these equations may prove useful and applicable for automatic control system and expert systems.

  • PDF

MAG용접의 스패터 발생 및 용적이행현상에 미치는 S의 영향 (Effect of S on Spatter Generation and Droplet Transfer Phenomena of MAG Welding)

  • 안영호;이종봉;최원규
    • Journal of Welding and Joining
    • /
    • 제19권5호
    • /
    • pp.486-491
    • /
    • 2001
  • The effect of S content in welding wires on spattering characteristics and droplet transfer phenomena was studied. In MAG welding using 80%Ar-$20%CO_2$ shielding gas, spattering characteristics and droplet transfer phenomena were varied with S content of wire. Sulfur addition in wire reduced surface tension of droplet and weld pool, and made arc more stable in MAG welding. With increasing S content, the spattering ratio and the ratio of large size spatter ($d{\geq}1.0mm$) were reduced in short circuit transfer mode. In spray transfer mode, spattering ratio, however was increased when sulfur was added more than 0.020wt.% because surface tension of droplets and weld pool was reduced too much even though arc stability was improved.

  • PDF

$CO_2$ 레이저 원격 용접시스템을 이용한 800Mpa급 고장력강의 용입특성 (The characteristic of penetration on the 800Mpa class high-tensile steel using remote welding system by $CO_2$ laser)

  • 송문종;이영주;송영채;정성문;정병훈;이문용
    • 한국레이저가공학회:학술대회논문집
    • /
    • 한국레이저가공학회 2006년도 추계학술발표대회 논문집
    • /
    • pp.17-20
    • /
    • 2006
  • In the remote welding system using $CO_2$ laser, laser beam is rapidly deflected by moving mirrors of scanner system and has focusable distance over 1000mm from workpiece. From such arrangement, various advantages and disadvantages arise. Remote welding is a highly efficient laser process. As the mirrors of the scanner system allow positioning speeds exceeding 700m/s, it becomes possible to reduce the welding cycle time. On the other hand, as there no the provision of shielding gas which is normally required for beam powers exceeding 3kW, may become difficult task. Therefore, In this study, the influence of the various penetration of back bead by the different laser welding speed on the weld seam formation without shielding gas was investigated.

  • PDF

아연도금강관의 GMAW에서 용접변수가 비드형상과 미세조직과 경도에 미치는 영향 (Effect of Welding Parameters on Bead Shape, Microstructure and Hardness of Galvanized Steel Pipe Welds with GMAW)

  • 임영민;이완규;김세철;고진현
    • 한국산학기술학회논문지
    • /
    • 제14권2호
    • /
    • pp.535-541
    • /
    • 2013
  • 본 연구에서는 아연도금강관 용접에 용접 전류, 전압과 보호가스가 용접 비드 형상과 미세조직과 경도에 미치는 영향을 조사하였다. 전압, 전류과 보호가스 종류 및 조성의 변화가 용접 비드의 높이와 너비, 용입깊이에 영향을 미침을 확인하였다. 비드높이에는 보호가스 Ar 가스, 용입에는 $CO_2$ 가스, 그리고 비드너비에는 Ar+$O_2$ 가스가 가장 큰 영향을 미쳤다. 용접부의 경도에서는 Ar+10% $O_2$ 와 Ar+20% $CO_2$ 가스 사용 시 결정립계 페라이트와 다각형 페라이트가 생성되어 낮았으며, Ar+2% $O_2$ 가스를 사용했을 때는 아시큘러 페라이트와 베이나이트적 페라이트와 사이드플레이트 페라이트가 생성되어 경도가 높았다.

선체외판부 3.2T 박판에 대한 SAW 용접 적용에 관한 연구 (A Study on the Application of SAW Process for Thin Plate of 3.2 Thickness in Ship Structure)

  • 오종인;윤진오;임동용;정상훈;이정수
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.51-51
    • /
    • 2010
  • Recently just as in the automobile industry, shipbuilders also try to reduce material consumption and weight in order to keep operating costs as low as possible and improve the speed of production. Naturally industry is ever searching for welding techniques offering higher power, higher productivity and a better quality. Therefore it is important to have a details research based on the various welding process applied to steel and other materials, and to have the ability both to counsel interested companies and to evaluate the feasibility of implementation of this process. Submerged-arc welding (SAW) process is usually used about 20% of shipbuilding. Similar to gas metal arc welding(GMAW), SAW involves formation of an arc between a continuously-fed bare wire electrode and the work-piece. The process uses a flux to generate protective gases and slag, and to add alloying elements to the weld pool and a shielding gas is not required. Prior to welding, a thin layer of flux powder is placed on the work-piece surface. The arc moves along the joint line and as it does so, excess flux is recycled via a hopper. Remaining fused slag layers can be easily removed after welding. As the arc is completely covered by the flux layer, heat loss is extremely low. This produces a thermal efficiency as high as 60% (compared with 25% for manual metal arc). SAW process offers many advantages compared to conventional CO2 welding process. The main advantages of SAW are higher welding speed, facility of workers, less deformation and better than bead shape & strength of welded joint because there is no visible arc light, welding is spatter-free, fully-mechanized or automatic process, high travel speed, and depth of penetration and chemical composition of the deposited weld metal. However it is difficult to application of thin plate according to high heat input. So this paper has been focused on application of the field according to SAW process for thin plate in ship-structures. For this purpose, It has been decided to optimized welding condition by experiments, relationship between welding parameters and bead shapes, mechanical test such as tensile and bending. Also finite element(FE) based numerical comparison of thermal history and welding residual stress in A-grade 3.2 thickness steel of SAW been made in this study. From the result of this study, It makes substantial saving of time and manufacturing cost and raises the quality of product.

  • PDF

철강재료 용접에서 보조가스가 레이저플라즈마와 용입특성에 미치는 영향 (Effect of Assist Gas on Laser Induced Plasma and Bead Formation in Welding of Structural Steel by CW Nd:YAG Laser)

  • 김기철;신현준
    • Journal of Welding and Joining
    • /
    • 제20권3호
    • /
    • pp.109-115
    • /
    • 2002
  • In this study high power Nd:YAG laser welding of structural steel was investigated. For the test steel blocks of $50{\times}50{\times}200mm$ were cut and machined, and bead-on-plate weld was made on the machined surface. Argon, nitrogen, helium, dry air or mixed gases were used to find the effect of shielding conditions on the bead formation. Results demonstrated that there were Fe I rich region and Fe II rich region in the laser induced plasma column based on the spectral analysis with S-2000 field spectrometer The Fe I region was located at the root of the column near keyhole opening. On the other hand, Fe II region was found at the middle of the plasma column. In the Nd:YAG laser welding, Fe I region emitted continuum which had peak value at wave length of around 710nm, and Fe II region had the peak at 580nm. In the welding of steel by $CO_2$ laser, however, no continuum was observed. There showed two groups of strong spikes in the $CO_2$ laser welding; the first group was displayed at the wave band of 450-560nm. This spike group emitted stronger intensity of light and sharper peaks than those group at 680-800nm.

GMA 용접에 있어서 아크 안정화를 위한 퍼지제어기 개발에 관한 연구 (Development of Fuzzy Controller for Stabilizing the Arc State in Gas Metal Arc Welding)

  • 강문진;이세헌
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.152-160
    • /
    • 1999
  • The weld quality of $CO_2$ arc welding is closely related to the arc stability. As the characteristics of the arc are excessively complex and nonlinear, it is not easy to make the arc model as mathematical form and to control the arc state to be stabilized. This paper was aimed to estimate the arc stability and to control for stabilizing the arc state in short circuit metal transfer mode of $CO_2$ arc welding. For these purposes, the behaviors of arc stability was investigated at different welding conditions using Mita's arc stability index, and the fuzzy control algorithm which uses the arc stability index as control imput and the arc voltage as control output was developed. In the control of the arc stability, the experiments of two cases were performed; the case of setting an initial welding voltage arbitrarily, the case of the step change in workpiece shape. Obtained results were as follows; Mita's arc stability index was able to be estimated qualitatively in the case of using the inverter type welding power source and the control performance for stabilizing the arc status was excellent in the case of existing step change disturbance.

  • PDF