• Title/Summary/Keyword: CO2 emission cost

Search Result 202, Processing Time 0.023 seconds

Comparison of the CO2 Emissions of Buildings using Input-Output LCA Model and Hybrid LCA Model (산업연관분석법 기반 LCA 모델과 Hybrid LCA 모델의 건축물 이산화탄소 배출량 평가결과 비교)

  • Hong, Taehoon;Ji, Changyoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.4
    • /
    • pp.119-127
    • /
    • 2014
  • This study aims to determine whether or not the input output life cycle assessment (I-O LCA) model can be used to assess the carbon dioxide (CO2) emission of buildings in initial planning phase. To ensure this end, this study proposed I-O LCA model which is the simplified LCA model and Hybrid LCA model which is the detailed LCA model, and then assessed and compared the CO2 emission of six case projects (three apartment complexes and three educational facilities) using the two LCA model. The results of the case study showed that the CO2 emissions assessed by the I-O LCA is significantly similar to the CO2 emission assessed by the Hybrid LCA model. The similarity of results from both LCA models was 78.2-86.3% in apartment complexes and 59.9-84.8% in educational facilities. However, the CO2 emissions from I-O LCA model were smaller than the CO2 emissions from Hybrid LCA model in case study. Nevertheless, the case study showed that the I-O LCA model was capable of assessing the CO2 emission of buildings quite appropriately although the I-O LCA model is the simplified LCA model which considers only the construction cost. The I-O LCA model is expected to be a useful tool for assessing the CO2 emission of buildings in initial planning phase.

A Study on the Model for Iron and Steel Technology Assessment Considering Cost Minimization and Environmental Effects : An Application of MARKAL Model (비용최소화와 환경영향을 고려한 철강기술 평가에 관한 연구 : MARKAL 모형의 응용)

  • 김종욱;홍종철;이장우;신희성;손재익;최기련
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.188-197
    • /
    • 1997
  • MARKAL model was applied for assessment of iron and steel technology for the year of 2032 considering cost and environmental effects based on 1992. Technology, energy and material flows were analyzed in iron and steel sector. Reference iron and steel system was designed according to this analysis. Six scenarios were developed considering cost and environmental limitations such as CO$_2$emission control and SOx reduction cost. Competitiveness of technologies in iron and steel sector was assessed under different environmental limitations with cost minimization. Through this study, it was confirmed that MARKAL model can be applied to technology assessment in the field of iron and steel industry.

  • PDF

Economic and Environmental Assessment of a Renewable Stand-Alone Energy Supply System Using Multi-objective Optimization (다목적 최적화 기법을 이용한 신재생에너지 기반 자립 에너지공급 시스템 설계 및 평가)

  • Lee, Dohyun;Han, Seulki;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.332-340
    • /
    • 2017
  • This study aims to propose a new optimization-based approach for design and analysis of the stand-alone hybrid energy supply system using renewable energy sources (RES). In the energy supply system, we include multiple energy production technologies such as Photovoltaics (PV), Wind turbine, and fossil-fuel-based AC generator along with different types of energy storage and conversion technologies such as battery and inverter. We then select six different regions of Korea to represent various characteristics of different RES potentials and demand profiles. We finally designed and analyzed the optimal RES stand-alone energy supply system in the selected regions using multiobjective optimization (MOOP) technique, which includes two objective functions: the minimum cost and the minimum $CO_2$ emission. In addition, we discussed the feasibility and expecting benefits of the systems by comparing to conventional systems of Korea. As a result, the region of the highest RES potential showed the possibility to remarkably reduce $CO_2$ emissions compared to the conventional system. Besides, the levelized cost of electricity (LCOE) of the RES-based energy system is identified to be slightly higher than conventional energy system: 0.35 and 0.46 $/kWh, respectively. However, the total life-cycle emission of $CO_2$ ($LCE_{CO2}$) can be reduced up to 470 g$CO_2$/kWh from 490 g$CO_2$/kWh of the conventional systems.

GHG-AP Integrated Sink/Emission Inventories and Environmental Value Analysis in Vegetation Sector of Seoul (서울시 식생부문 온실가스-대기오염 통합 흡수/배출량 인벤토리 및 환경가치분석)

  • Jung, Jaehyung;Kwon, O-Yul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.72-82
    • /
    • 2015
  • We constructed greenhouse gas (GHG) and air pollution (AP) integrated sink/emission inventories and evaluated the environmental value for the vegetation sector in Seoul during year 2010. The data of vegetation, classified into four sectors of cultivated land, forest land, park and street tree, were obtained from Statistics Korea and Seoul City. Based on the previous studies, only $CO_2$ was chosen as GHG sink by vegetation. $NO_2$ and $SO_2$ were chosen as AP sink by vegetation, while isoprene, monoterpene, other VOC (OVOC) and NH3 were chosen as AP emission from vegetation. Estimation methodology and sink/emission factors were gathered from reports and published literatures. Estimated GHG sink by vegetation during year 2010 was 12,987,173 $tonCO_{2eq}$, of which approximately 1/4 was from pure vegetation and the remaining 3/4 from vegetation soil. AP sink and emission were estimated to be 23,309 tonAP and 2,629,797 tonAP, respectively. The analysis by administrative districts in Seoul revealed that among 25 districts, Seocho-gu, Nowon-gu, Eunpyeong-gu, Gwanak-gu and Gangbuk-gu were the major districts in GHG and AP sink/emission inventories for vegetation sector. Environmental value of vegetation as a function of GHG and AP sink, was estimated as 800 billion won, corresponding to 5% of the total cost of the forest land in Korea evaluated as a public function.

Experimental Study of Emission Characteristics for CNG Passenger Car (CNG 승용 자동차의 배출가스 특성에 관한 실험적 연구)

  • Kim, Hyun-jun;Lee, Ho-kil
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.34-39
    • /
    • 2015
  • Recently, most of the energy consumed in vehicle is derived from fossil fuels. For this reason, the demand for clean, renewable and affordable alternative energy is forcing the automotive industry to look beyond the conventional fossil fuels. Natural gas represents today a promising alternative to conventional fuels for vehicles propulsion, because it is characterized by a relatively low cost, better geopolitical distribution than oil, lower environmental impact, higher octane number and a higher self ignition temperature. Above all, CNG is an environmentally clean alternative to the existing spark ignition engines with the advantages of minimum change. In this study was installed bi-fuel system that a conventional 2 liters gasoline engine was modified to run on natural gas by a gas injection system. Experiments were mainly carried on the optimization of an ECU control strategy affecting the emission characteristics of CNG/Gasoline bi-fule vehicle. The test results shown that CO2 emission in bi-fuel mode was reduced 16% compared to gasoline fuel in the NEDC mode. Also the amount of CO and HC emissions in bi-fuel and gasoline modes were found to equality. But Compared to gasoline, the bi-fuel mode resulted in higher NOx emissions.

Study on Development of air-passing soundproofing panel (통풍형 방음벽 개발에 관한 연구 I)

  • Yoon, Je-Won;Sim, Sang-Deok;Kim, Young-Chan;Ku, Bon-Sung;Eom, Joo-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.638-643
    • /
    • 2011
  • The aluminum soundproofing panel used to the traffic noise reduction will judge with the material to improve because the CO2 emission is greater than other soundproofing panel such as plastic soundproofing panel. Also, if the air-passing soundproofing panel which can endure the fast wind velocity will be developed, it judged that it can reached to the target of low CO2 traffic technology development using the reduction of material cost and the lower consumption of steel. The objective of this study is to improve the soundproofing panel and to develop the air-passing soundproofing panel for the replacement of aluminum sound proofing panel which is more emit CO2 than other soundproofing panel. And, we tried to develop the reduction technology of CO2 emission through the development of air-passing soundproofing panel. At first, the flow and noise simulation were conducted for the purpose of the calculation of wind pressure on soundproofing wall and noise exposure level on receiver points according to the open ratio of air-passing soundproofing panel. And the 1st and 2nd mockup of air-passing soundproofing panel were made, and the design load test were conducted for these mockup.

  • PDF

A Study on Repowering of Domestic Aged Coal-fired Power Plant

  • Baek, SeHyun;Kim, YoungJoo;Kim, HyunHee;Park, SangBin;Jang, JiHoon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 2017
  • Recently, the public opinion is growing that the main cause of greenhouse gas, fine dust and nitrogen oxide, sulfuric acid emission is coal-fired power plant, and now the decommission or conversion to other clean fuel is being demanded. However, it is a huge national loss to decommission coal-fired power plant with remaining life, and also simple fuel converting to natural gas will lead to drastic rise on power generating cost. Therefore, this study aims to provide the analysis result about the reduction effect of $CO_2$, environment emission, and to influence to power plant performance and facilities when repowering with adding gas turbine is applied to domestic aged coal-fired power plant.

Energy Supply Systems for $CO_{2}$ Emission Control in Korea : An Application of MARKAL Model ($CO_{2}$ 배출량 저감을 고려한 국내 에너지공급시스템 분석 : 시장분배모형(MAEKAL)의 응용)

  • 신희성;홍종철;강희정
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.18 no.1
    • /
    • pp.79-95
    • /
    • 1993
  • MARKAL (MARKet ALlocation) Model, one of the most sophisticated energy technology assessment model is applied to finding the optimum mix of energy sources and evaluating energy technology competitiveness in Korea. The model is capable of handling Multiple Objective Linear Programming to test the related cost minimization and environmental control function. In this paper three environmental regulation scenarios are observed including 10% and 20% reduction of carbon dioxide emission level. For the purpose of establishing the basic data base, Korea Reference Engergy System is also developed on the base of the year 1989 with technology utilization and energy flow analysis.

  • PDF

A Study on Airlines Network Changes by Emission Charges (배출가스 부과금에 따른 항공사 네트워크의 변화에 관한 연구)

  • Kim, Baek-Jae;Choi, Jin-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.178-186
    • /
    • 2017
  • Air travel has become an essential part of the global society and its sustainable development is expected. Airlines profit structure and network operation will be influenced by internalization of external costs like emission charge. This additional cost of the airlines will be directly pose air ticket fare increase and demand of air passenger will be decreased. EU-ETS is a part of environmental binding to airlines fly to EU territory airports. This study analyzes the impact of emission charges by application of EU-ETS on airlines network change. For long-term forecast, a reliable estimation of the future price of carbon dioxide (CO2) will be used.

Techno-Economic Study on Non-Capture CO2 Utilization Technology

  • Lee, Ji Hyun;Lee, Dong Woog;Kwak, No-Sang;Lee, Jung Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.109-113
    • /
    • 2016
  • Techno-economic evaluation of Non-Capture $CO_2$ Utilization (NCCU) technology for the production of high-value-added products using greenhouse gas ($CO_2$) was performed. The general scheme of NCCU process is composed of $CO_2$ carbonation and brine electrolysis process. Through a carbonation reaction with sodium hydroxide that is generated from brine electrolysis and $CO_2$ of the flue gas, it is possible to get high-value-added products such as sodium bicarbonate, sodium hydroxide, hydrogen & chloride and also to reduce the $CO_2$ emission simultaneously. For the techno-economic study on NCCU technology, continuous operation of bench-scale facility which could treat $2kgCO_2/day$ was performed. and based on the key performance data evaluated, the economic evaluation analysis targeted on the commercial chemical plant, which could treat 6 tons $CO_2$ per day, was performed using the net present value (NPV) metrics. The results showed that the net profit obtained during the whole plant operation was about 7,890 mKRW (million Korean Won) on NPV metrics and annual $CO_2$ reduction was estimated as about $2,000tCO_2$. Also it was found that the energy consumption of brine electrolysis is one of the key factors which affect the plant operation cost (ex. electricity consumption) and the net profit of the plant. Based on these results, it could be deduced that NCCU technology of this study could be one of the cost-effective $CO_2$ utilization technology options.