• Title/Summary/Keyword: CO2 emission

Search Result 2,504, Processing Time 0.025 seconds

Experimental Study on Reduction of Particulate Matter and Sulfur Dioxide Using Wet Electrostatic Precipitator (습식전기집진기를 활용한 입자상 물질 및 황산화물 저감 성능에 관한 실험적 연구)

  • Kim, Jong-Lib;Oh, Won-Chul;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.898-904
    • /
    • 2021
  • This experimental study aims to investigate the use of a wet electrostatic precipitator as a post-treatment device to satisfy the strict emission regulations for sulfur oxides and particulate matter (PM). The inlet/outlet of a wet electrostatic precipitator was installed in a funnel using a marine four-stroke diesel engine (STX-MAN B&W) consuming marine heavy fuel oil (HFO) with a sulfur content of about 2.1%. Measurements were then obtained at the outlet of the wet electrostatic precipitator; an optical measuring instrument (OPA-102), and the weight concentration measurement method (Method 5 Isokinetic Train) were used for the PM measurements and the Fourier transform infrared (FT-IR; DX-4000) approach was used for the sulfur oxide measurements. The experimenst were conducted by varying the engine load from 50%, to 75% and 100%; it was noted that the PM reduction efficiency was a high at about 94 to 98% under all load conditions. Additionally, during the process of lowering the exhaust gas temperature in the quenching zone of the wet electrostatic precipitator, the sulfur dioxide (SO2) values reduced because of the cleaning water, and the reduction rate was confirmed to be 55% to 81% depending on the engine load.

Optimization of Automated Solid Phase Extraction-based Synthesis of [18F]Fluorocholine (고체상 추출법을 기반으로 한 [18F]Fluorocholine 합성법의 최적화 연구)

  • Jun Young PARK;Jeongmin SON;Won Jun KANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.261-268
    • /
    • 2023
  • [18F]Fluorocholine is a radiopharmaceutical used non-invasively in positron emission tomography to diagnose parathyroid adenoma, prostate cancer, and hepatocellular carcinoma by evaluating the choline metabolism. In this study, a radiolabeling method for [18F]fluorocholine was optimized using a solid phase extraction (SPE) cartridge. [18F]Fluorocholine was labeled in two steps using an automated synthesizer. In the first step, dibromomethane was reacted with [18F]KF/K2.2.2/K2CO3 to obtain the intermediate [18F]fluorobromomethane. In the second step, [18F]fluorobromomethane was passed through a Sep-Pak Silica SPE cartridge to remove the impurities and then reacted with N,N-dimethylaminoethanol (DMAE) in a Sep-Pak C18 SPE cartridge to label [18F]fluorocholine. The reaction conditions of [18F]fluorocholine were optimized. The synthesis yield was confirmed according to the number of silica cartridges and DMAE concentration. No statistically significant difference in the synthesis yield of [18F]fluorocholine was observed when using four or three silica cartridges (P>0.05). The labeling yield was 11.5±0.5% (N=4) when DMAE was used as its original solution. On the other hand, when diluted to 10% with dimethyl sulfoxide, the radiochemical yield increased significantly to 30.1±5.2% (N=20). In conclusion, [18F]Fluorocholine for clinical use can be synthesized stably in high yield by applying an optimized synthesis method.

Efficient Cyclization of Substituted Diphenols : Application to the Synthesis of Sulforhodamine B (치환 다이페놀의 효율적 고리화 반응: 설퍼로다민B의 합성에의 응용)

  • Park, Min Kyun;Shim, Jae Jin;Ra, Choon Sup
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.102-107
    • /
    • 2015
  • Rhodamine dyes are widely used as fluorescent probes because of their excellent photophysical properties, such as high extinction coefficients, excellent quantum yields, great photostability, relatively long emission wavelengths. A great synthetic effort has been focused on developing efficient and practical procedures to prepare rhodamine derivatives, because for most applications the probe must be covalently linked to another (bio)molecule or surface. Sulforhodamine B is one of the most used rhodamine dyes for this purpose, because it carries two sulfoxy functions which can be easily utilized for binding with other molecules. Recently, we needed an expedient, practical synthesis of sulforhodamine derivatives. We found the existing procedure for obtaining those compounds unsatisfactory, particularly, with the cyclization process of the dihydroxytriarylmethane (1) to produce the corresponding xanthene derivative (2). We report here our findings, which represent modification of the existing literature procedure and provide access to the corresponding xanthene derivative (2) in a high yield. Use of methanol as a co-solvent was found quite effective to prohibit the water molecule produced during the cyclization reaction from retro-cyclizing back to the starting dihydroxytriarylmethane and the yield of the cyclization was increased (up to 84% from less than 20%). The reaction temperature was significantly lowered (80 vs. 135 ℃). Thus, the reaction proceeds in a higher yield and energy-saving manner where the use of reactants and the production of chemical wastes is minimized.

Modification of Silica Nanoparticles with Bis[3-(triethoxysilylpropyl)]tetrasulfide and Their Application for SBR Nanocomposite (Bis[3-(triethoxysilylpropyl)]tetrasulfide에 의한 실리카 입자의 표면개질 반응과 SBR 나노 복합체 응용)

  • Ryu, Hyun Soo;Lee, Young Seok;Lee, Jong Cheol;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.308-315
    • /
    • 2013
  • In this study, we performed surface modification of silica nanoparticles with bis[3-(triethoxysilylpropyl)]tetrasulfide (TESPT) silane coupling agent to study the effects of treatment temperature, treatment time, and amount of TESPT used on the silanization degree with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), elemental analysis (EA) and solid state $^{13}C$ and $^{29}Si$ cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR). We found peak area of isolated silanol groups at $3747cm^{-1}$ decreased, but peak area of $-CH_2$ asymmetric stretching of TESPT at $2938cm^{-1}$ increased with the amount of TESPT from FTIR measurements. We also used universal testing machine (UTM) to study mechanical properties of styrene butadiene rubber (SBR) nanocomposites with 20 phr (parts per hundred of rubber) of pristine and TESPT modified silicas, respectively. The tensile strength and 100% modulus of modified silica/SBR nanocomposite were enhanced from 5.65 to 9.38MPa, from 1.62 to 2.73 MPa, respectively, compared to those of pristine silica/SBR nanocomposite.

Effectiveness and Characteristics Analysis of Inertia Driving on Fuel-Cut Zones in Urban Highway (도시부도로 연료차단구역의 관성주행 특성 및 효과분석)

  • Choi, Eun Jin;Kim, Eungcheol;Kim, Yong Jin;Yang, Joo Young
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.1
    • /
    • pp.40-49
    • /
    • 2015
  • In this study, the effects of inertial driving on a fuel-cut zone were analyzed by measuring the instantaneous variations of fuel consumption and speed. Thirteen sites with 2-8% downhill slopes were selected for the vehicle experiments. The vehicles were driven on the sites in two different driving modes, and the various vehicle states were measured using OBD under driving. For the analysis of the effects of inertial driving, the characteristics of fuel consumption, speed, and rpm were compared between normal and inertial driving. As a result, the fuel consumption was reduced from 24% to 78% according to the downhill grade. The amount of fuel consumption reduction was about 30cc for driving 500m downhill. Fuel cost savings amounting to 35 billion won can be achieved if inertial driving will be done in the case of Munemi-ro3. It is also believed that the reduced fuel consumption and vehicle speed through inertial driving will have considerable environmental and safety benefits.

A Study on the Content Variation of Metals in Welding Fumes (용접흄 충 금속함량 변화에 관한 연구)

  • 윤충식;박동욱;박두용
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.117-129
    • /
    • 2002
  • Concentration of welding fumes and their components is known to be hazardous to welder and adjacent worker. To determine the generation rates of metals in fumes, $CO_2$ flux cored arc welding on stainless steel was performed in well designed fume collection chamber. Variables were different products of flux cored wire(2 domestic products and 4 foreign products) and input energy(low-, optimal- , high input energy). Mass of welding fumes was determined by gravimetric method(NIOSH 0500 method), and 17 metals were analysed by inductively coupled plasm-atomic emission spectroscopy(NIOSH 7300 method). Flux cored wire tube and flux were analysed by scanning electron microscopy to determine their metal composition. 17 metals were classified by their generation rates. Generation rates of iron, manganese, potassium and sodium were all above 50mg/min at optimal input energy level. Generation rates of chromium and amorphous silica were 25~50mg/min. At 1~25mg/min level, nickel, titanium, molybdenum, and aluminum were included. Copper, zinc, calcium, lead, magnesium, lithium, and cobalt were generated below 1 mg/min. Generation rates of metal components in fumes were influenced by input energy, types of flux cored wire. Flux cored wire was consisted of outer shell tube and inner flux. Iron, chromium, and nickel were the major components of outer tube. Flux contained iron, chromium, nickel, potassium, sodium, silica, and manganese. The use of flux cored wire can increase the hazards by increasing the amounts of fumes formed relative to that of solid wire. The reason might be the direct transfer of elements from the flux, since the flux is fine power. Ratio of metals to the fume of flux cored wire was lower than that of solid wire because non-metal components of flux were transferred. Total metal content of fumes in flux cored arc welding was 47.4(24.3~57.2) percent that is much lower than that of solid wire, 75.9 percent. We found that generation rates of iron, manganese, chromium and nickel, all well known to cause work related disease to welder, increased more rapidly with increasing input energy than those of fumes. To reduce worker exposure to fumes and hazardous component at source, further research is needed to develop new welding filler materials that decrease both the amount of fumes and hazardous components.

Manufacturing Characteristics of Boards Recycling Waste Wood Particle (폐목재파티클을 이용한 재생보드의 제조특성)

  • Kim, Wae-Jung;Suh, Jin-Suk;Han, Tae-Hyung;Park, Jong-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.120-127
    • /
    • 2006
  • The hammer-milled characteristics of waste wood materials such as lumber, plywood, particleboard(PB), MDF and railroad tic were investigated in this study. The physical and mechanical properties of recycled boards according to types of recycled particle and the mixing ratios were also studied. The hammer-milled, waste wood materials had the dimensional distributions suitable for the core layer panicle. Bending strengths of recycled boards (one layer) were shown in order of plywood, PB(laboratory-fabricated with particles used in the PB factory), lumber, tego film-overlaid plywood, MDF, waste railroad tie, PB(factory-made) and LPL-overlaid PB. Cured resin and creosote containing waste wood contributed to dimensional stability of reconstituted boards. Considering the mixing effects between lumber and plywood with recycled PB particle, lumber particle was contributive to bending strength, MOE and internal bond(IB) strength, whereas plywood particle was contributive to dimensional stability. The bending and IB strength of 3 layer boards composing only recycled waste wood particles in core layer of board were in order of lumber, plywood, PB and MDF. On the other hand, the thickness swelling was in order of PB, lumber, plywood and MDF. Bending strength of the 3 layer boards mixed with recycled PB-particle in the core layer had a decreasing tendency, as the mixing ratios of recycled PB-particles increased. The dimensional stability of 3 layer recycled board was improved as the mixing ratio of recycled PB-particle increased same as in one layer. Formaldehyde emission of boards fabricated with recycled PB-particles in the core layer of the PB was in the range of E2 grade (below 5.0mg/l).

  • PDF

THE EFFECT OF SOLDER AND LASER WELD ON CORROSION OF DENTAL ALLOYS (납착법과 레이저융합법이 치과용 합금의 부식에 미치는 영향)

  • Baik Jin;Woo Yi-Hung;Choi Dae-Gyun;Choi Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.2
    • /
    • pp.264-279
    • /
    • 2005
  • Statement of problem. Intraoral corrosion not only affects the esthetic and function of metallic dental restoration, but also has biologic consequences as well. Therefore, corrosion is considered a primary factor when choosing the dental alloy and laboratory technique. Purpose. The objective of this study was to compare the effects of solder and laser weld on corrosion Material and methods. Test specimens were made of 2 types of gold alloys, Co-Cr and Ni-Cr alloy and fabricated 3 methods, respectively: as cast, solder, and laser weld. For the analysis of corroding properties, potentiodynamic polarization test and immersion test conducted. The potentiodynamic polarization scan curve were recorded in 0.9% NaCl solution(pH 7) using Potentiostat/Galyanostat Model 273A. All specimens were exposed to 0.9% NaCl solution(pH 2.3) during 14 days. Elemental release into corrosive solution was measured by atomic emission spectrometry Differences in corrosion potential and mass release were determined using ANOVA. Results and conclusion. Through analyses of the data, following results were obtained. 1. In Pontor MPF and Wiron 99, corrosion potential of the solder group was statistically lower than as cast and laser weld group (p<0.05) , but there was no difference between corrosion potential of solder group and laser weld group in Pontor MPF and no differences between as cast and laser weld group (p>0.05). In Jel-Bios 10 and Wirobond, there was no difference of corrosion potential according to joining methods(p>0.05). 2. In all tested alloys, the amount of released metallic ion was greatest in the solder group(p<0.05). There was no difference between as cast group and laser weld group in Jel-Bios 10 and Wirobond(p>0.05). 3. In scanning electron microscopic examination. except soldered Wiron 99 specimens, it is impossible to discriminate the corrosive property of solder and laser weld. 4. Under the this experimental circumstances, laser weld appears superior to the solder when corrosion is considered.

MICROTENSILE BOND STRENGTH OF SELF-ETCHING AND SELF-ADHESIVE RESIN CEMENTS TO DENTIN AND INDIRECT COMPOSITE RESIN (간접 복합레진 합착 시 자가부식형과 자가접착형 레진시멘트의 상아질에 대한 미세인장 결합강도)

  • Park, Jae-Gu;Cho, Young-Gon;Kim, Il-Sin
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.106-115
    • /
    • 2010
  • The purpose of this study was to evaluate the microtensile bond strength (${\mu}TBS$), failure modes and bonding interfaces of self-etching and three self-adhesive resin cements to dentin and indirect composite resin. Cylindrical composite blocks (Tescera, Bisco Inc.) were luted with resin cements (PA: Panavia F 2.0, Kuraray Medical Inc., RE: RelyX Unicem Clicker, 3M ESPE., MA: Maxem, Kerr Co., BI: BisCem, Bisco Inc.) on the prepared occlusal dentin surfaces of 20 extracted molars. After storage in distilled water for 24 h, $1.0\;mm\;{\times}\;1.0\;mm$ composite-dentin beams were prepared. ${\mu}TBS$ was tested at a cross-head speed of 0.5 mm/min. Data were analyzed with one-way ANOVA and Tukey's HSD test. Dentin sides of all fractured specimens and interfaces of resin cements-dentin or resin cements-composite were examined at FESEM (Field Emission-Scanning Electron Microscope). In conclusion, PA and RE showed higher bond strength and closer adaptation than MA and BI when indirect composite blocks were luted to dentin using a self-etching and three self-adhesive resin cements.

Analysis of Contribution to Net Zero of Non-Urban Settlement - For Green Infrastructure in Rural Areas - (비도시 정주지의 탄소중립 기여도 분석 - 농촌지역 그린인프라를 대상으로 -)

  • Lee, Dong-Kyu;An, Byung-Chul
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.3
    • /
    • pp.19-34
    • /
    • 2022
  • This study was conducted to provide basic data that can be used when establishing Net Zero policies and implementation plans for non-urban settlements by quantitatively analyzing the Net Zero contribution to green infrastructure in rural areas corresponding to non-urban settlements. The main purpose is to first, systematize green infrastructure in rural areas, secondly derive basic units for each element of green infrastructure, and thirdly quantify and present the impact on Net Zero in Korea using these. In this study, CVR(Content Validity Ration) analysis was performed to verify the adequacy of green infrastructure elements in rural areas derived through research and analysis of previous studies, is as follows. First, Hubs of Green infrastructure in rural area include village forests, wetlands, farm land, and smart farms with a CVR value of .500 or higher. And Links of Green infrastructure in rural area include streams, village green areas, and LID (rainwater recycling). Second, the basic unit for each green infrastructure element was presented by classifying it into minimum, maximum, and median values using the results of previous studies so that it could be used for spatial planning and design for Net Zero. Third, when Green infrastructure in rural areas is applied to non-urban settlements in Korea, it is analyzed that it has the effect of indirectly reducing CO2 by at least 70.76 million tons and up to 141.16 million tons. This is 3.4 to 6.7 times the amount of CO2 emission from the agricultural sector in 2019, and it can be seen that the contribution to Net Zero is very high. It is expected to greatly contribute to the transformation of the ecosystem. This study quantitatively presented the carbon-neutral contribution to settlements located in non-urban areas, and by deriving the carbon reduction unit for each element of green infrastructure in rural areas, it can be used in spatial planning and design for carbon-neutral at the village level. It has significance as a basic research. In particular, the basic unit of carbon reduction for each green infrastructure factors will be usable for Net Zero policy at the village level, presenting a quantitative target when establishing a plan, and checking whether or not it has been achieved. In addition, based on this, it will be possible to expand and apply Net Zero at regional and city units such as cities, counties, and districts.