• Title/Summary/Keyword: CO-shifter

Search Result 19, Processing Time 0.024 seconds

Improved Reduction of Carbon Monoxide by Highly Efficient Catalytic Shift for Fuel Cell Applications

  • Youn, M.J.;Chun, Y.N.
    • Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.192-196
    • /
    • 2008
  • The generation of high purity hydrogen from reformed hydrocarbon fuels, or syngas, is essential for efficient operation of the fuel cell (PEMFC, Polymer Electrolyte Membrane Fuel Cell). Usually, major components of reformed gas are $H_2$, CO, $CO_2$ and $H_2O$. Especially a major component, CO poisons the electrode of fuel cells. The water gas shifter (WGS) that shifts CO to $CO_2$ and simultaneously produces $H_2$, was developed to a two stage catalytic conversion process involving a high temperature shifter (HTS) and a low temperature shifter (LTS). Also, experiments were carried out to reduce the carbon monoxide up to $3{\sim}4%$ in the HTS and lower than 5,000 ppm via the LTS.

2-6 GHz Digital Phase Shifter Module (2-6 GHz 디지털 위상변위기 모듈)

  • Jeong, Myeong-Deuk;So, Jun-Ho;U, Byeong-Il;Im, Jung-Su;Lee, Sang-Won;Park, Dong-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.3
    • /
    • pp.158-164
    • /
    • 2002
  • 2-6 GHz digital phase shifter module has been designed and fabricated. For the broadband operation and performance, MMIC phase shifter chip for phase shifter module was designed and fabricated by using the reflection-type circuits with Lange coupler. The fabricated phase shifter module shows 6.1$^{\circ}$RMS phase error, 13.5 dB maximum insertion loss, and 8 dB and 10 dB input and output return losses, respectively. Computer controlled measurement systems are realized in order to get the measured data of 32 phase states. The RMS insertion phase error and the average insertion loss deviation among 8${\times}$8 modules for the phased-array system are less than ${\pm}$0.5$^{\circ}$and ${\pm}$0.5 dB, respectively. The size of fabricated phase shifter module is 45 ${\times}$ 22.5 ${\times}$60㎣.

Development of phase shifter for Ka-band Passive Phase Array Seeker and Seeker Performance Analysis due to the Phase Error of Phase Shifter (Ka-대역 수동위상배열탐색기용 위상 변위기 개발 및 변위기 위상 오차에 의한 탐색기 성능 분석)

  • Kim, Youngwan;Woo, Seon-keol;Kwon, Jun-beom;Kang, Yeon-duk;Park, Jongkuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.149-155
    • /
    • 2019
  • In this paper, phase shifter has been designed and manufactured to apply to passive phase array seeker for Ka-band and its performance was confirmed. It was designed as a key element for conducting electric beam steering by adjusting the phase of the array element. Insertion loss of less than 1.5dB and phase accuracy of less than $10^{\circ}$(RMS) in operation bandwidth of 1GHz were checked. The performance identified by the actual fabrication was further analyzed by applying the beam pattern analysis based on the array synthesis theory. The effect of the final performamnce of the proven phase shifter on the performance and pointing error and angular accuracy of the passive phase array antenna beam pattern was analyzed. Then, the validation of the proposed phase shifter has been made.

Novel Impulsive Driving Schemes for 120Hz LCD Panels

  • Nam, Hyoung-Sik;Oh, Jae-Ho;Shin, Byung-Hyuk;Oh, Kwan-Young;Berkeley, Brian H.;Kim, Nam-Deog;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.818-821
    • /
    • 2007
  • Two new impulsive driving technologies for use in 120Hz LCD panels are proposed to improve moving picture quality. One technology generates the dark frame using an adder and a shifter simply without using any LUTs. The other is a backlight flashing method designed to avoid ghost images. Using the PBET metric, measured MPRT values were 10.8ms and 4.4ms, respectively.

  • PDF

Transceiver IC for CMOS 65nm 1-channel Beamformer of X/Ku band (X/Ku 대역 CMOS 65nm 단일 채널 빔포머 송수신기 IC )

  • Jaejin Kim;Yunghun Kim;Sanghun Lee;Byeong-Cheol Park;Seongjin Mun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.43-47
    • /
    • 2024
  • This paper introduces a phased-array single-channel transceiver beamformer IC built using 65nm CMOS technology, covering the 8-16 GHz range and targeting the X and Ku bands for radar and satellite communications. Each signal path in the IC features a low noise amplifier (LNA), power amplifier (PA), phase shifter (PS), and variable gain amplifier (VGA), which allow for phase and gain adjustments essential for beam steering and tapering control in typical beamforming systems. Test results show that the phase-compensated VGA offers a gain range of 15 dB with 0.25 dB increments and an RMS gain error of 0.27 dB. The active vector modulator phase shifter delivers a 360° phase range with 2.8125° steps and an RMS phase error of 3.5°.

Low Power Consumption Technology for Mobile Display

  • Lee, Joo-Hyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.402-403
    • /
    • 2009
  • A variety of power reduction technologies is introduced and the benefits of the technologies are discussed. PenTile$^{(R)}$ DBLC (Dynamic Brightness LED Control) combined with SABC (Sensor-Based Adaptive Brightness Control) enables to achieve the average LED power consumption to one third. The panel power reduction of 25% can be achieved with low power driving technology, ALS (Active Level Shifter). MIP (Memory In Pixel) is expected to be useful in transflective display because the whole display area can be utilized in reflective mode with power consumption of 1mW.

  • PDF

Novel Impulsive Driving Schemes for 120Hz LCD Panels

  • Nam, Hyoung-Sik;Oh, Jae-Ho;Shin, Byung-Hyuk;Oh, Kwan-Young;Berkeley, Brian H.;Kim, Nam-Deog;Kim, Sang-Soo
    • Journal of Information Display
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Two new impulsive driving technologies for 120Hz liquid crystal display (LCD) panels are proposed to improve moving picture quality. One technology generates the dark frame using an adder and a shifter simply without using any look up tables (LUTs). It results in a cost effective impulsive scheme with motion picture quality comparable to that of high speed driving. The other is a backlight flashing method designed to avoid ghost images. The issue of ghost images caused by the slow response time of liquid crystal (LC) is solved by means of 120Hz overdriving and 120Hz backlight flashing. Using the perceived blur edge time (PBET) metric, measured moving picture response time (MPRT) values were 10.8ms and 4.4ms, respectively, while that of 120Hz high speed driving was 10.1ms.

Design of a Compact Wilkinson Power Divider Using Meta-Material Lines (Meta-Material을 이용한 소형 Wilkinson 전력 분배기 설계)

  • Kim, Jeong-Pyo;Kim, Gi-Ho;Yang, Myo-Geun;Seong, Won-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.953-958
    • /
    • 2006
  • A compact Wilkinson power divider with meta-material transmission line(MM-TL) is proposed. The divider is designed by adding the MM-TL with $+90^{\circ}$ phases shifting instead of the ${\lambda}_g/4$ with $-90^{\circ}$ phases shifting at a simple Wilkinson power divider. The MM-TL consists of three phase shifter unit cells and each cell has the characteristics of the $30^{\circ}$ phases shilling and 6 mm length. Therefore, the length of ${\lambda}_g/4(210 mm)$ TL with $-90^{\circ}$ phases shifting at a simple Wilkinson power divider can be reduced to 18 mm and the Wilkinson divider is very compact.

Study on Hydrogen Production and CO Oxidation Reaction using Plasma Reforming System with PEMFC (고분자 전해질 연료전지용 플라즈마 개질 시스템에서 수소 생산 및 CO 산화반응에 관한 연구)

  • Hong, Suck Joo;Lim, Mun Sup;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.656-662
    • /
    • 2007
  • Fuel reformer using plasma and shift reactor for CO oxidation were designed and manufactured as $H_2$ supply device to operate a polymer electrolyte membrane fuel cell (PEMFC). $H_2$ selectivity was increased by non-thermal plasma reformer using GlidArc discharge with Ni catalyst simultaneously. Shift reactor was consisted of steam generator, low temperature shifter, high temperature shifter and preferential oxidation reactor. Parametric screening studies of fuel reformer were conducted, in which there were the variations of the catalyst temperature, gas component ratio, total gas ratio and input power. and parametric screening studies of shift reactor were conducted, in which there were the variations of the air flow rate, stema flow rate and temperature. When the $O_2/C$ ratio was 0.64, total gas flow rate was 14.2 l/min, catalytic reactor temperature was $672^{\circ}C$ and input power 1.1 kJ/L, the production of $H_2$ was maximized 41.1%. And $CH_4$ conversion rate, $H_2$ yield and reformer energy density were 88.7%, 54% and 35.2% respectively. When the $O_2/C$ ratio was 0.3 in the PrOx reactor, steam flow ratio was 2.8 in the HTS, and temperature were 475, 314, 260, $235^{\circ}C$ in the HTS, LTS, PrOx, the conversion of CO was optimized conditions of shift reactor using simulated reformate gas. Preheat time of the reactor using plasma was 30 min, component of reformed gas from shift reactor were $H_2$ 38%, CO<10 ppm, $N_2$ 36%, $CO_2$ 21% and $CH_4$ 4%.

The Performance & Operation Analysis of a Steam Reformer for MCFC (MCFC용 Steam Reformer 개질성능 분석 및 운전평가)

  • Seo, Hai-Kung;Koh, Joon-Ho;Lim, Hee-Chun
    • Journal of Hydrogen and New Energy
    • /
    • v.11 no.4
    • /
    • pp.149-159
    • /
    • 2000
  • This paper is concerned with the performence of a steam reformer for 25kW class MCFC, which is compared with the theoretically calculated results at various operating conditions. The theoretical $H_2$ production amount and $CH_4$ conversion rate are calculated with variations of temperature and steam/carbon (S/C) ratio using fortran program, and the actual values are measured from flowmeter and gas chromatography. As a result of the comparison of theoretical and actual values, the theoretical $H_2$ production amount is calculated by $24.4m^3/hr$ at the normal operating condition(LNG $9m^3/hr$, S/C ratio 5, absolute pressure $2.77kg/cm^2$, $610^{\circ}C$), but the actual production amount is only $19.4m^3/hr$, which is 79.5% of the theoretical value. Nevertheless, at the normal operating condition, the reformer for 25kW class MCFC performed well for a 2,100 hr long run operation, constantly producing $H_2$.

  • PDF