• Title/Summary/Keyword: CO oxidation

Search Result 1,519, Processing Time 0.032 seconds

Advanced Treatment of Piggery Slurry Using Micro Ozone Bubble, UV, Ultra Sonic and Hydroxy Peroxide (미세기포화 오존과 자외선, 초음파, 과산화수소를 이용한 돈분뇨 슬러리 고도처리)

  • Jeong, K.H.;Kim, J.H.;Kwag, J.H.;Jeong, M.S.;Lee, K.H.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.3
    • /
    • pp.209-216
    • /
    • 2009
  • The aim of this study was to investigate the removal effects of the color, nutritive salts and other pollutants on piggery slurry by advanced oxidation process (AOP) system. The experimental AOP system was designed to treat 300 L of piggery slurry per hour. To enhance oxidizing power of the experimental APO system, a ultraviolet irradiation system and the ultrasonic system were attached to the AOP system. With 5 min ultrasonic treatment, COD, SS and T-N concentrations were changed from 210, 820, and 309 to 200, 760, and 262 mg/L, respectively. With 10 min ultrasonic treatment, SS and T-N concentrations tended to decrease but T-P concentration was not changed. With the treatment of both ozone and ultrasonic waves for 30 min, COD, SS, T-N and T-P decreased from 238, 900, 400, and 5 to 165, 540, 263, and 4 mg/L, respectively. With the treatment of both ozone and ultraviolet irradiation for 30 min, COD, SS, T-N and T-P decreased from 321, 340, 204, and 15 to 151, 140, 111, and 7 mg/L, respectively, and color was changed from 4,344 to 624.

  • PDF

Thermal Decomposition of A New Insecticide KH-502 [O, O-Diethyl O-(1-phenyl -3-trifluoromethy-5-pyrazoyl) thiophosphoric acid ester] (신규(新規) 살충제(殺蟲劑)인 O, O, O-Diethyl-O-(1-phenyl-3-trifluoromethyl-5-pyrazoyl) thiophosphoric acid ester의 열(熱)에 의한 분해성(分解性))

  • Cho, Boo-Yeon;Han, Dae-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.3
    • /
    • pp.225-234
    • /
    • 1992
  • Thermal decomposition was conducted to investigate the influence of the various factors on stability of a new insecticide, [O, O-Diethyl O-(1-phenyl-3-trifluoromethyl-5-pyrazoyl) thiophosphoric acid ester : KH-502], in view of those informations applicable for industrial exploitation. In the thermal decomposition experiment, KH-502 was, after mixing with Fe, Cu and adjustment of moisture and pH conditions, subjected to three temperatures, 25, 50, and $100^{\circ}C$. Results for stability, and degradation pattern of KH-502 from the above experiment can be summarized as follows: 1. Main products of the thermal decomposition when this was conducted in the closed system were identified as following five compounds:O, O, O-Triethylthiophosphoric acid(TEPA), 1-Phenyl-3-trifluoromethyl-5-ethoxypyrazole(PTMEP), 1-Phenyl-2-ethyl-3-trifluoromethyl-5-hydroxypyrazole(PETMHP), O, O-Diethyl O-(1-phenyl-3-trifluoromethyl-5-pyrazoyl)phosphoric acid ester(KH-502 oxo form), O, S-Diethyl O-(1-phenyl-3-trifluoromethyl-5-pyrazoyl)phospho rothiolate(S-ethyl KH-502). However, compounds such as oxo form and S-ethyl KH-502 were not identified when the thermal decomposition was proceeded in the open system. 2. KH-502 was stable at 25 and 50$^{\circ}C$, but it was decomposed at 100$^{\circ}C$ following the first-order kinetics at the early stages of decomposition. 3. Rate constants for the thermal decomposition of KH-502 at 100$^{\circ}C$ were in the orders of Cu powder addition 0.344>Cu plate addition 0.21>moisture addition 0.05>closed system=open system=iron addition=pH 5.5 adjustment 0.04>pH 8.5 adjustment 0.027 day$^{-1}$, representing KH-502 was decomposed fast at Cu powder treatment and slow at pH 8.5 adjustment. 4. Half-life for the thermal decomposition of KH-502 at 100$^{\circ}C$ was in the orders of Cu powder addition 2.02

  • PDF

Treatment of Landfill Leachate using H2O2/O3 AOP and UASB Process (I) - Treatment Characteristics of Leachate depending on H2O2/O3 AOP Pretreatment and Available Nitrogen Form - (H2O2/O3 AOP와 UASB 공정을 이용한 매립지 침출수 처리(I) - H2O2/O3 AOP 전처리 및 질소원에 따른 침출수별 처리특성 -)

  • Jeong, Seung Hyun;Jeong, Byung Gon
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.643-650
    • /
    • 2005
  • In order to treat leachate from aged landfill site effectively, removal of biologically recalcitrant organic matter and denitrification efficiency were evaluated through the combination of $H_2O_2/O_3$ AOP pretreatment process and UASB process. The results can be summarized as follows. In case of leachate having low COD/N ratio from aged landfill site, it is possible to increase available COD for denitrification in nitrate utilizing denitrification and nitrite utilizing denitrification both by enhancing biodegradability of recalcitrant organic matter as applying $H_2O_2/O_3$ AOP to pretreatment process. In this experiment, it is found that available COD for denitrification can be increased to 1.0 and 0.4 g/day, respectively. Comparison has been made between requiring COD and available COD for denitrification in each experimental stages. It is expected that high rate of denitrification can be achieved with leachate from young landfill site because higher amount of available COD for denotrification is present in the leachate than the amount of requiring COD for denitrification. Especially, In leachate from aged landfill site with low COD/N ratio, it can be concluded that denitrification using nitrite nitrogen can enhance overall denitrification performance efficiently because denitrification using nitrite nitrogen requires less amount of carbon source than denitrification using nitrate nitrogen. Comparing the biogas production rate and nitrogen content of biogas under the condition of same amount of nitrate and nitrite addition, biogas production and nitrogen content of biogas are increased during denitrification after $H_2O_2/O_3$ AOP pretreatment process. Therefore, it can be confirmed that COD/N ratio in the leachate is increased. Applying $H_2O_2/O_3$ AOP as pretreatment system of landfill leachate seems to have little economic benefit because it requires additional carbon source to denitrify ammonia nitrogen in leachate coming from aged landfill site. However, it is possible to apply this pretreatment process to leachate from old landfill site in view of AOP process can achieve removal of biologically recalcitrant organic matter and increase of available COD for denitrification simultaneously.

Changes in Antioxidant and Nitrite Scavenging Activities of Angelica keiskei and Brassica loeracea var. acephala Vegetable Juices Treated with UV Irradiation during Storage (UV 조사한 신립초 및 케일 녹즙의 항산화 활성 및 아질산염 소거작용의 변화)

  • Choi, Goo-Hee;Kwon, Sang-Chul;Lee, Kyung-Haeng
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1187-1193
    • /
    • 2010
  • To elongate the shelf-life of Angelica keiskei and Brassica loeracea var. acephala vegetable juices, UV irradiation was used and the changes of antioxidant activity and nitrite scavenging ability were investigated. The content of polyphenols of vegetable juices were slightly reduced by UV treatment and/or storage period. The DPPH radical-scavenging activities of the vegetable juices treated by UV were higher than that of control but were not changed during storage. However, $ABTS{\cdot}^+$ reducing activities of the vegetable juices were reduced by UV treatment. The $ABTS{\cdot}^+$ reducing activity of Brassica loeracea var. acephala juice was lower when the flow rate was slower. The ferrous ion chelating effects of Angelica keiskei vegetable juices were reduced by UV treatment. In contrast, the ferrous ion chelating effects of Brassica loeracea var. acephala vegetable juices were not different from those of right after manufacturing. The ferrous ion chelating effects on both vegetable juices increased during storage periods. The inhibitory activity of lipid oxidation was decreased slightly by UV treatment on vegetable juices. The nitrite scavenging ability of Angelica keiskei and Brassica loeracea var. acephala vegetable juices treated by UV irradiation was not different from that of control. The nitrate scavenging abilities of vegetable juices in pH 1.2 were higher than those in pH 3.0 and 4.2.

TiO2 Nanotubular Formation on Grade II Pure Titanium by Short Anodization Processing (Grade II 순수 타이타늄의 단시간 양극산화에 의한 TiO2 나노튜브 형성)

  • Lee, Kwangmin;Kim, Yongjae;Kang, Kyungho;Yoon, Duhyeon;Rho, Sanghyun;Kang, Seokil;Yoo, Daeheung;Lim, Hyunpil;Yun, Kwiduk;Park, Sangwon;Kim, Hyun Seung
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.240-245
    • /
    • 2013
  • Electrochemical surface treatment is commonly used to form a thin, rough, and porous oxidation layer on the surface of titanium. The purpose of this study was to investigate the formation of nanotubular titanium oxide arrays during short anodization processing. The specimen used in this study was 99.9% pure cp-Ti (ASTM Grade II) in the form of a disc with diameter of 15 mm and a thickness of 1 mm. A DC power supplier was used with the anodizing apparatus, and the titanium specimen and the platinum plate ($3mm{\times}4mm{\times}0.1mm$) were connected to an anode and cathode, respectively. The progressive formation of $TiO_2$ nanotubes was observed with FE-SEM (Field Emission Scanning Electron Microscopy). Highly ordered $TiO_2$ nanotubes were formed at a potential of 20 V in a solution of 1M $H_3PO_4$ + 1.5 wt.% HF for 10 minutes, corresponding with steady state processing. The diameters and the closed ends of $TiO_2$ nanotubes measured at a value of 50 cumulative percent were 100 nm and 120 nm, respectively. The $TiO_2$ nanotubes had lengths of 500 nm. As the anodization processing reached 10 minutes, the frequency distribution for the diameters and the closed ends of the $TiO_2$ nanotubes was gradually reduced. Short anodization processing for $TiO_2$ nanotubes of within 10 minutes was established.

Biocompatibility and Surface Characteristics of (Si,Mn)-HA Coated Ti-Alloy by Plasma Electrolytic Oxidation (PEO법으로 (Si,Mn)-HA 코팅된 치과 임플란트용 Ti 합금의 생체적합성 및 표면특성)

  • Gang, Jeong-In;Son, Mi-Gyeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.83-83
    • /
    • 2017
  • 생체재료의 표면은 이식과 동시에 생체계면의 역할을 하게 되어, 일련의 생물학적 반응이 시작되고 진행되는 중요한 장소가 된다. 초기에 생체계면에서 일어나는 단백질 흡착이나 염증반응을 비롯한 생물학적 반응들은 궁극적으로 임플란트의 성패를 좌우할 만큼 중요하다. 골융합을 개선하기 위한 다른 방법으로 생체불활성의 타이타늄 (Ti)과 골조직의 능동적인 반응을 이루기 위해 생체활성 표면을 부여함으로서 계면에서의 골형성 반응을 증진시키는 방법이 이용된다. 생체불활성의 Ti과 Ti합금은 골조직과 직접적인 결합을 이루지 못하므로, 골조직과의 반응을 향상하기 위해 여러 종류의 생체활성 재료를 코팅하는 방법이 연구되어 왔고, 이 중 생체의 변화와 가장 유사한 하이드록시아파타이트 코팅이 가장 대중적인 방법으로 사용되었으며 이는 초기 골형성을 촉진하는 것으로 알려졌다. 치과용 임플란트의 표면형상과 화학조성이 골 융합에 영향을 미치는 가장 중요한 인자이므로 최근의 연구동향은 이들 두 가지 표면특성을 결합함으로서 결과적으로 최적의 골세포반응을 유도하고, 골융합 후 골조직과의 micromechanical interlocking에 의해 임플란트의 안정성에 중요한 역할을 하는 마이크론 단위의 표면조도와 표면 구조를 유지하면서, 부가적으로 골 조직 반응을 능동적으로 개선할 수 있는 생체활성 성분을 부여하여 골 융합에 상승효과를 이루기 위한 표면처리법에 관해 많은 연구가 요구되어지고 있다. 따라서 골을 구하는 원소인 망간과 실리콘으로 치환된 하이드록시아파타이트를 플라즈마 전해 산화법으로 코팅하여 세포와 잘 결합할 수 있는 표면을 제공함으로써 골 융합과 치유기간을 단축시킬 수 있을 것으로 사료된다. 실험방법은 시편은 치과 임플란트 제작 합금인 Ti-6Al-4V ELI disk (grade 5, Timet Co., USA; diameter, 10 mm, thickness, 3 mm)이며, calcium acetate monohydrate, calcium glycerophosphate, manganese(II) acetate tetrahydrate, sodium metasilicate을 설계조건에 따라 혼합 제조된 전해질 용액을 이용하여 플라즈마 전해 산화법으로 표면 코팅을 실시하였다. 각 시편의 플라즈마 전해시 전압은 280V로 인가하였고, 전류밀도는 70mA로 정전류를 공급하여 해당 인가전압 도달 후 3분 동안 정전압 방식을 유지하였다. 코팅된 피막 표면을 주사전자현미경과 X-선 회절분석을 통하여 미세구조 및 결정상을 관찰하였다. 또한 코팅된 표면의 생체활성 평가는 정량적으로 평가하기 위해 동전위시험과 AC 임피던스를 통하여 시행하였다. 분극거동을 확인하기 위해 potentiostat (Model PARSTAT 2273, EG&G, USA)을 이용하여 구강 내 환경과 유사한 $36.5{\pm}1^{\circ}C$의 0.9 wt.% NaCl에서 실시하였다. 전기화학적 부식 거동은 potentiodynamic 방법으로 조사하였고 인가전위는 -1500 mV에서 2000 mV까지 분당 1.67 mV/min 의 주사속도로 인가하여 시험을 수행하였다. 임피던스 측정은 potentiostat (Model PARSTAT 2273, EG&G, USA)을 이용하였으며, 측정에 사용한 주파수 영역은 10mHz ~ 100kHz 까지의 범위로 하여 조사하였고 ZSimWin(Princeton applied Research, USA) 소프트웨어를 사용하여 용액의 저항, 분극 저항 값을 산출하였다. 망간의 함량이 증가할수록 불규칙한 기공을 보였으며, 실리콘은 $TiO_2$ 산화막 형성을 저해하는 경향을 확인할 수 있었다. 단독으로 표면을 처리한 경우보다 두 가지 원소를 이용해 복합 표면처리를 시행한 경우가 내식성이 좋아 임플란트과의 골 유착에 긍정적인 영향을 미칠 것으로 사료된다.

  • PDF

Effects of Yellow Clay on the Production of Volatile Fatty Acids during the Anaerobic Decomposition of the Red Tide Dinoflagellate Cochlodinium polykrikoides in Marine Sediments (해양퇴적층에서 적조생물(Cochlodinium polykrikoides)의 혐기성 분해과정 중 황토가 휘발성 지방산 생성에 미치는 영향)

  • Park, Young-Tae;Lee, Chang-Kyu;Park, Tae-Gyu;Lee, Yoon;Bae, Heon-Meen
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.5
    • /
    • pp.472-479
    • /
    • 2012
  • The formation of volatile fatty acids(VFAs) and changes in pH, oxidation and reduction potential(Eh) and acid volatile sulfide(AVS) with the addition of yellow clay were investigated using microcosm systems to examine the effects of yellow clay dispersion on the anaerobic decomposition of Cochlodinium polykrikoides in marine sediments. The acetate concentration reached a maximum by day 4 and was 1.2-1.8 fold less in the sample treated with yellow clay compared to the untreated sample (224-270 vs. 333 uM). The formate concentration reached a maximum by day 1 and was 1.3-2.8 fold less in the sample treated with yellow clay compared to the untreated sample (202-439 vs. 563 uM). The propionate concentration reached a maximum by day 2 and was 1.5-1.8 fold less in the sample treated with yellow clay compared to the untreated sample (32.6 vs. 57.2 uM). After the amounts of acetate, formate and propionate peaked the levels dropped dramatically due to the utilization by sulfate reducing bacteria. The Eh of the samples treated with yellow clay was similar to the untreated sample on day 0 but was higher in the sample treated with yellow clay(140-206 mV) from days 4 to 17. AVS started to form on day 3 and this was sustained until day 6, and 1.2-2.2 fold less was produced in the sample treated with yellow clay compared to the untreated sample (40.2-69.3 vs. 83.2-93.8 mg/L). Accordingly, during the anaerobic decomposition of C. polykrikoides in marine sediments, yellow clay dispersal seems to suppress the reduction state of Eh and the formation of volatile fatty acids(acetate, formate and propionate) used as an energy source by sulfate reducing bacteria, indicating that this process controls the production of hydrogen sulfide that negatively affects marine organisms and the marine sediment environment.

Effect of Ozone Concentration on AOP Efficiency of Secondary Effluent from Pig Slurry Purification System (오존 접촉농도가 양돈슬러리 2차 처리수의 고도처리 효율에 미치는 영향)

  • Jeong, K.H.;Jeon, S.K.;Ryu, S.H.;Kim, J.H.;Kwag, J.H.;Ann, H.K.;Jeong, M.S.;Yoo, Y.H.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.3
    • /
    • pp.181-188
    • /
    • 2011
  • With an increasing livestock population, animal manure production has been steadily increasing in Korea. This trend has forced farmers to spend more money for animal manure treatment in their farm. Therefore, research utilizing animal manure as a renewable resources has become increasingly important. The purpose of this study was to develop a stable advanced wastewater treatment system can be applied to conventional animal wastewater treatment processes and evaluate its contribution to reduce effluent discharge volume by recycling as flushing water. AOP (advanced oxidation process) process improved wastewater treatment efficiency in terms of color, suspended solids (SS) and chemical oxygen demand (COD). Due to the addition of Hydrogen peroxide ($H_2O_2$), pathogens, Salmonella and E. coli, reduction was accomplished. To enhance ozone treatment effect, three levels of ozone test on secondary effluent of pig slurry purification system were conducted. At the level of 5 g/hr, 6.7 g/hr and 8.4 g/hr color of secondary effluent of pig slurry purification system were decreased from 2,433 to 2,199, 2,433 to 1,980 and 2,433 to 243, respectively.

The Effects of Various Reaction Conditions on Trans Isomer Formation in Hydrogenating Edible Soybean Oil (식용(食用) 대두유(大豆油) 경화시(硬化時) 반응조건(反應條件)이 이성체(異性體) 생성(生成)에 미치는 영향(影響))

  • Choi, Eok;Joo, Hyun-Kyu;Lee, Si-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.205-209
    • /
    • 1995
  • Edible hardened soybean oil is processed by hydrogenation of refined soybean oil in order to upgrade the heat and oxidation stability and to improve flavor and physical nature. This study aims to investigate the influences of various reaction conditions on iodine value, fatty acid composition and trans isomer formation in hydrogenating soybean oil. In case that hardening temperature is $180^{\circ}C$, trans acid formation increased by 6.2 times more under $3.0{\;}kg/cm^{2}H_{2}$ than under $0.5{\;}kg/cm^{2}H_{2}$, while linolenic acid decreased in contents. In case of $200^{\circ}C$ of hardening temperature trans acid formation showed 4.6% higher under $0.5{\;}kg/cm^{2}H_{2}$ than under $3.0{\;}kg/cm^{2}H_{2}$ while contents of linolenic and linoleic acids showed 0.51% and 2.5% lower respectively. It is concluded that $200^{\circ}C$ of hardening temperature under 0.5 and $3.0{\;}kg/cm^{2}H_{2}$ is better condition because trans isomers are little produced, and iodine value and linolenic acid content decreased in hardening soybean oil.

  • PDF

Effects of High Temperature Deformation and Thermal Exposure on Carbide Reaction Cast Alloy 738LC (고원변형과 열간노출에 따른 주조용 합금 738LC의 탄화물 분해거동 고찰)

  • Ju, Dong-Won;Jo, Chang-Yong;Kim, Du-Hyeon;Seo, Seong-Mun;Lee, Yeong-Chan
    • Korean Journal of Materials Research
    • /
    • v.10 no.2
    • /
    • pp.111-116
    • /
    • 2000
  • Fracture mode and carbide reactions of cast alloy 738LC during thermal exposure and creep at 816$^{\circ}C$/440MPa and 982$^{\circ}C$/152MPa were investigated. Crystallographic transgranular failure was observed in the specimen crept at 816$^{\circ}C$ due to shearing on the slip plane. Because selective oxidation at the grainboundaries which was exposed at the surface leads reduction in surface energy, however, early initiation of crack at the grainboundaries and intergranular failure were observed in the specimen crept at 982$^{\circ}C$/152MPa. As a result of decomposition of MC carbide at the tested temperatures, M(sub)23C(sub)6 carbide precipitated either on the grainboundaries or on the deformation band. The applied stress enhanced decomposition of MC. $\sigma$phase nucleated from Cr(sub)23C(sub)6 then grew to the ${\gamma}$+${\gamma}$\\` matrix. Precipitation of $\sigma$was accelerated by increasing temperature and applied stress.

  • PDF