• Title/Summary/Keyword: CO conversion

Search Result 1,492, Processing Time 0.028 seconds

A study of NOx performance for Cu-chabazite SCR catalysts by Sulfur poisoning and desulfation (Cu-Chabazite SCR Catalysts의 황 피독 및 탈황에 의한 NOx 저감 성능에 관한 연구)

  • Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.855-861
    • /
    • 2013
  • Small-pore Cu-chabazite SCR catalysts with high NOx conversion at low temperatures are of interest for marine diesel engines with exhaust temperatures in the range of 150 to $300^{\circ}C$. Unfortunately, fuels for marine diesel engines can contain a high level of sulfur of up to 1.5% by volume, which corresponds to a $SO_2$ level of 500 ppm in the exhaust gases for an engine operating with an A/F ratio of 50:1. This high level of $SO_2$ in the exhaust may have detrimental effects on the NOx performance of the Cu-chabazite SCR catalysts. In the present study, a bench-flow reactor is used to investigate the effects of sulfur poisoning on the NOx performance of Cu-chabazite SCR catalysts. The SCR catalysts were exposed to simulated diesel exhaust gas stream consisted of 500 ppm $SO_2$, 5% $CO_2$, 14% $O_2$, 5% $H_2O$ with $N_2$ as the balance gas at 150, 200, 250 and $300^{\circ}C$ for 2 hours at a GHSV of 30,000 $h^{-1}$. After sulfur poisoning the low-temperature NOx performance of the SCR catalyst is evaluated over a temperature range of 150-$300^{\circ}C$ to determine the extent of the catalyst deactivation. Desulfation is also carried out at 600 and $700^{\circ}C$ for 30 minutes to determine whether it is possible to recover the NOx performance of the sulfur-poisoned SCR Catalysts.

Emulsion Polymerization of Vinyl acetate-Butyl acrylate Copolymer (유화 중합에 의한 비닐 아세테이트-부틸 아크릴레이트 공중합체의 합성 연구)

  • 설수덕;임종민
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.135-142
    • /
    • 2004
  • Poly(vinyl acetate) (PVAc) prepared by emulsion polymerization has broad applications for additives such as paint binder, adhesive for wood and paper due to its low glass transition temperature which help to plasticize substrate resins. Since emulsion polymerization has a disadvantage that surfactant and ionic initiator degrade properties of the product polymer, poly(vinyl acetate-co-butyl acrylate) (VVc-BA) was synthesized using potassium persulfate as catalyst and poly(vinyl alcohol) (PVA) as protective colloid to prevent the degradation. The copolymer latex product was internally plasticized and has enhanced colloid stability, adhesion, tensile strength and elongation. During VAc-BA emulsion polymerization, no coagulation and complete conversion occur with the reactant mixture of 0.7wt% potassium persulfate, 15wt% poly(vinyl alcohol) (PVA-217), and the balanced monomer that the weight ratio of vinyl acetate to butyl acrylate is 19. As the concentrations of PVA increase, the copolymerization becomes faster and polymer particles are more stable, resulting in enhanced mechanical stability of the VAc-BA copolymer. However, the size of the polymer particles decreases with increasing PVA contents. Properties of the VAc-BA copolymer, such as minimum film formation temperature, glass transition temperature, surface morphology, molecular weight and molecular weight distribution, tensile strength and elongation, were characterized using differential scanning calorimeter, transmission electron microscope and other instruments.

A Study on the Effect of Different Functional Groups in Anion Exchange Membranes for Vanadium Redox Flow Batteries (바나듐 산화환원 흐름전지를 위한 음이온교환막의 관능기에 따른 특성 연구)

  • Lee, Jae-Myeong;Lee, Mi-Soon;Nahm, Ki-Seok;Jeon, Jae-Deok;Yoon, Young-Gi;Choi, Young-Woo
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.415-424
    • /
    • 2017
  • Commonly cation exchange membranes have been used for vanadium redox flow batteries. However, a severe vanadium ion cross-over causes low energy efficiency. Thus in this study, we prepared 3 different anion exchange membranes to investigate the effect on the membrane properties such as vanadium ion cross-over and long term stability. The base membranes were prepared by an electrolyte pore filling technique using vinyl benzyl chloride (VBC), divinylbenzene (DVB) within a porous polyethylene (PE) substrate. Then 3 different functional amines were introduced into the base membranes, respectively. These resulting membranes were evaluated by physico-chemical properties such as ion exchange capacity, dimensional stability, vanadium ion cross-over and membrane area resistance. Conclusively, TEA-functionalized membrane showed longest term stability than other membranes although all the membranes are similar to coulombic efficiency.

A Comparative Study of Commercial Catalysts for Methanol Steam Reforming (메탄올 수증기 개질반응에서의 상용촉매 비교연구)

  • Park, Jung-Eun;Park, Jae-Hyun;Yim, Sung-Dae;Kim, Chang-Soo;Park, Eun-Duck
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.21-27
    • /
    • 2011
  • The comparison work was conducted for the methanol steam reforming among commercial Cu-based catalysts, viz. ICI-M45, which is for the methanol synthesis, MDC-3 and MDC-7, which are for the water-gas shift reaction. The catalytic activity for the water-gas shift reaction was also compared over three catalysts. Among them, MDC-7 showed the highest methanol conversion and formation rate of hydrogen and carbon dioxide at 473 K for the methanol steam reforming. To find out any promotional effect between ICI-M45 and MDC-7, three different packing methods with these two catalysts were examined. However, no synergistic effect was observed. The catalytic activity for watergas shift reaction decreased in the following order: MDC-7 > MDC-3 > ICI-M45. The highest activity of MDC-7 for the methanol steam reforming as well as the water-gas shift reaction can be due to its high surface area, copper dispersion, and an adequate Cu/Zn ratio.

Removal of tar and particulate from gasification process using pre-coating technology (바이오매스 가스화 공정의 생성가스 중 타르 및 입자 제거를 위한 pre-coating 기술 연구)

  • Kim, Joon-Yub;Choi, Byoung-Kwon;Jo, Young-Min;Kim, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.804-815
    • /
    • 2019
  • Due to the depletion and environmental problems of fossil fuel, biomass has arisen as an alternative energy source. Biomass is a renewable and carbon-neutral source. However, it is moister and has lower energy density. Therefore, biomass needs thermal chemical conversion processes like gasification, and it does not only produce a flammable gas, called 'syngas', which consists of CO, H2, and CH4, but also some unwanted byproducts such as tars and some particulates. These contaminants are condensed and foul in pipelines, combustion chamber and turbine, causing a deterioration in efficiency. Thus this work attempted to find a method to remove tars and particles from syngas with a filter which adopts a pre-coating technology for preventing blockage of the filter medium. Hydrated limestone powder and activated carbon(wood char) powder were used as the pre-coat materials. The removal efficiency of the tars was 86 % and 80 % with activated carbon(wood char) coating and hydrated limestone coating, respectively.

Comparative Study of the Effects of the Intermodal Freight Transport Policies (인터모달 추진 정책과 효과에 관한 비교연구)

  • Woo, Jung-Wouk
    • Journal of Distribution Science
    • /
    • v.13 no.10
    • /
    • pp.123-133
    • /
    • 2015
  • Purpose - The Korean government has devised intermodal transportation policies and granted subsidies to shippers and logistics companies that made a conversion of transportation means through the policies. This provides support by expanding the complex uniform railroad transportation and overhauling the deteriorated railroad facilities. As for 2013, however, the freight transportation percentage of railroad was 4.5% in tons and 8.5% in ton kilometers. Meanwhile, since the 1990s, developed countries such as the U.S. and Europe have been trying to expand intermodal freight transport with a legal and institutional support to build a logistics system corresponding with social and economic environmental changes. In this study, I set out to examine the effects of the intermodal freight transport policies in the EU and the U.S., and to explore the direction of setting up a rail intermodal transport system in South Korea. Research design, data, and methodology - The paper used a qualitative research methodology through the literature review. First, was an overview of Intermodal transportation in the EU, U.S. and UN. Second, it describes the development of transport in Europe and the U.S. with particular emphasis on intermodal freight transport. Third, it explores the direction of setting up a intermodal freight transport in South Korea. The last section contains concluding remarks. Results - As for the EU, it has been promoting integration between transport and intermodal logistics network designs while utilizing ITS or ICT and supports for rail freight intermodal by giving reduction to a facilities fee or subsidizing for rail freight in order to minimize the cost of external due to freight transport. On the other hand, as for the U.S., it has been made up of an industrial-led operating project and has been promoting it to improve accessibility between intermodal hubs and cargo terminals through intermodal corridor program, and an intermodal cargo hub access corridor projects, etc. Moreover, it has tried to construct intermodal transport system using ITS or ICT and to remove Barrier. As a result, in these countries, the proportion of intermodal freight transport is going to be the second significant transport compared with rail and maritime transport. An Effective rail intermodal transport system is needed in South Korea, as seen in the case of these countries. In order to achieve this object, the following points are required to establish radical infrastructure policy; diversify investment financing measures taken under public-private partnerships, legal responsibilities, improvement of utilization of existing facilities to connect the railway terminal and truck terminal, and enhancement service competitiveness through providing cargo tracking and security information that combines the ITS and ICT. Conclusions - This study will be used as a basis for policy and support for intermodal freight transport in South Korea. In the future, it is also necessary to examine from the perspective of the shipper companies using the rail intermodal transport, ie, recognition of shipper, needed institutional supports, and transportation demand forecasting and cost-effective analysis of the railway infrastructure systems improvement.

Effect of Dietary β-Mannanase Supplementation and Palm Kernel Meal Inclusion on Laying Performance and Egg Quality in 73 Weeks Old Hens

  • Lee, Jun Yeob;Kim, Sang Yun;Lee, Jae Hwan;Lee, Jeong Heon;Ohh, Sang Jip
    • Journal of Animal Science and Technology
    • /
    • v.55 no.2
    • /
    • pp.115-122
    • /
    • 2013
  • This study was conducted to evaluate the effect of dietary ${\beta}$-mannanase supplementation and palm kernel meal (PKM) inclusion (5%) on laying performance, egg quality and nutrient utilizability of laying hens with 73 weeks of age. A total of 240 Lohmann brown laying hens with average 77.5% egg production were randomly allocated with 60 hens per treatment, 4 replicates per treatment and 15 hens per replicate. Experimental design was a completely randomized design with $2{\times}2$ factorial arrangement, with the factors being (1) two levels of PKM (0 vs. 5%) and (2) with or without dietary ${\beta}$-mannanase (480 IU/kg of diet CTCzyme$^{(R)}$) supplementation. All hens were housed in cages ($35cmW{\times}35cmD{\times}40cmH$) with 2 hens per cage for six weeks feeding trial. Laying performance was recorded daily during feeding trial. Egg quality, nutrients utilizability and blood assays were done at the end of feeding trial. Egg production was improved (P<0.05) by both dietary PKM inclusion and ${\beta}$-mannanase combined supplementation. Either ${\beta}$-mannanase or PKM did not affect feed intakes and feed conversion ratio of all diets. Egg weight of hens fed diet containing 5% of PKM had heavier (P<0.05) eggs compared with hens fed without PKM. Albumen height was improved (P<0.05) by dietary mannanase supplementation. Crude fat utilization of 5% PKM diet was higher than that of no PKM diet regardless of ${\beta}$-mannanase supplementation. Both DM and total carbohydrate utilization were decreased (P<0.05) in hens fed 5% PKM diet. Serum IgG and yolk IgY contents of PKM groups were lower (P<0.05) than those of no PKM groups. This result showed that 5% PKM diet, independent of dietary ${\beta}$-mannanase supplementation, was able to improve egg production. In addition, dietary ${\beta}$-mannanase supplementation could be used for improving the albumen height of eggs.

The Comparative Study on the Characteristics of Thermoacoustic Laser According to Shapes of Resonance Tube (공명 튜브의 기하학적 형상에 따른 열음향 레이저의 특성 비교 연구)

  • Kim, Nam-Jin;An, Eoung-Jin;Oh, Won-Jong;Oh, Seung-Jin;Chun, Wongee
    • Journal of Energy Engineering
    • /
    • v.21 no.2
    • /
    • pp.133-137
    • /
    • 2012
  • Among various clean energy technologies, the solar energy technology has been widely used in various fields such as photovoltaic power generation and solar water/space heating. These days, special attention is drawn on its conversion into acoustic energy along with waste heat as a means to promote clean energy utilization. This work was carried out to investigate the possibility of converting solar energy into acoustic waves, especially, its performance characteristics for a single resonance tube (20.2 mm in ID). Variations are made for the stack length and its position as well as power supply. For a resonance tube of 200mm, an average sound pressure of 114.5 dB was measured with a stack length of 25.6mm at 5cm from the closed end. When the power supply was increased to 35W, an average sound pressure of 117.29 dB was detected with a frequency of 500Hz. There was an increase in frequency, 630 Hz (115.7dB), with a shorter resonance tube of 150mm.

Comparison of Growth Performance, Carcass and Meat Characteristics According to the Feeding Method of Concentrate and Total Mixed Fermentation in Hanwoo Steers (TMF와 배합사료의 급여방법이 거세한우의 성장 및 도체특성에 미치는 영향)

  • Park, Byung-Ki;Ahn, Jun-Sang;Choi, Jang-Geun;Kwon, Eung-GI;Shin, Jong-Suh
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.4
    • /
    • pp.281-291
    • /
    • 2019
  • This study was carried out to investigate the effect of the feeding method of total mixed fermentation (TMF) and concentrate feed on the growth performance, carcass and meat characteristics of late fattening Hanwoo steers. Twenty-four Hanwoo steers were used in this study. The control group was fed with concentrate feed + rice straw from the growing to the late fattening period, while the T1 group was fed with TMF from the growing to the early fattening period and concentrate feed + rice straw for the late fattening period. The T2 group was fed with TMF from the growing to the late fattening period. The average daily gain (ADG) and feed conversion ratio (FCR) were not different between the treatment and control group. Serum cholesterol and high density lipoprotein (HDL) cholesterol concentrations were higher in the T2 groups than in the control group (p<0.05). The yield grade and quality grade were not different between the treatment and control group. The lightness of longissimus muscle was higher in the T1 group than in the control and T2 groups (p<0.05). Poly-unsaturated fatty acid (PUFA) of longissimus muscle was increased in the T2 groups than in the control group. Therefore, the method of feeding TMF and concentrate feed could have a positive effect on the lightness and fatty acid composition of longissimus muscle without affecting the growth and carcass grades of Hanwoo steers.

Production of Lactulose by Biological Methods and Its Application (생물학적 방법을 통한 기능성 이당 lactulose의 생산과 응용 연구)

  • Kim, Yeong-Su;Kim, Do-Yeon;Park, Chang-Su
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1477-1486
    • /
    • 2016
  • Lactulose (4-O-${\beta}$-D-galactopyranosyl-D-fructose) is a non-digestible synthetic ketose disaccharide which can used in food and pharmaceutical fields due to its useful functions for encephalopathy, chronic constipation, hyperammonemia, etc. Therefore, the lactulose is regarded as one of the most important disaccharides and have been concentrated much interesting as an attractive functional material in the current industry. From this reason, the research related on the production of lactulose has been carried out various academic and industrial research groups. To produce lactulose, two main methods, chemical production and enzymatic production have been used. Commercially lactulose produced by alkaline isomerization of lactose as chemical production method but it has many disadvantages such as rapid lactulose degradation, purification, and waste management. From these reasons, lactulose produced by enzymatic method which solves these problems has been suggested as a proper method for lactulose production. Two different enzymatic methods have been reported as methods for lactulose production. Lactulose can be obtained through hydrolysis and transfer reaction catalyzed by a ${\beta}$-galactosidase which requires fructose as co-substrate and exhibits a low conversion. Alternatively, lactulose can be produced by direct isomerization of lactose to lactulose catalyzed by cellobiose 2-epimerase which requires lactose as a single substrate and achieves a high lactulose yield. This review summarizes the current state of lactulose production by chemical and biological methods.