• 제목/요약/키워드: CO Oxidation

검색결과 1,516건 처리시간 0.03초

Support Effect of Catalytic Activity on 3-dimensional Au/Metal Oxide Nanocatalysts Synthesized by Arc Plasma Deposition

  • Jung, Chan Ho;Naik, B.;Kim, Sang Hoon;Park, Jeong Y.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.140.2-140.2
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic activity for heterogeneous catalysis. In this work, we report the catalytic activity of $Au/TiO_2$, $Au/Al_2O_3$, and $Au/Al_2O_3-CeO_2$ nanocatalysts under CO oxidation fabricated by arc plasma deposition (APD), which is a facile dry process with no organic materials involved. These catalytic materials were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and $N_2$-physisorption. Catalytic activity of the materials has measured by CO oxidation using oxygen, as a model reaction, in a micro-flow reactor at atmospheric pressure. Using APD, the catalyst nanoparticles were well dispersed on metal oxide powder with an average particle size (3~10 nm). As for catalytic reactivity, the result shows $Au/Al_2O_3-CeO_2$ nanocatalyst has the highest catalytic activity among three samples in CO oxidation, and $Au/TiO_2$, and $Au/Al_2O_3$ in sequence. We discuss the effects of structure and metal-oxide interactions of the catalysts on catalytic activity.

  • PDF

산소부화화염내 CO2의 열 및 화학적 효과에 대한 연구 (Investigation on Thermal and Chemical Effects of CO2 in Oxygen Enriched Flame)

  • 금성민;이창언;한지웅
    • 대한기계학회논문집B
    • /
    • 제29권5호
    • /
    • pp.617-624
    • /
    • 2005
  • An analysis of the effects of $CO_{2}$ on fundamental combustion characteristics was performed in Oxygen enriched condition by comparing the laminar burning velocities, flame structures, fuel oxidation paths. Fictitious $CO_{2}$ was introduced to discriminate the chemical reaction effects of $CO_{2}$ from the thermal effects. PREMIX code was utilized to evaluate the laminar burning velocities. OPPDIF code was utilized to investigate the flame structure and fuel oxidation path variation. The contributions of thermal effects on laminar burning velocities are dominant at lowly oxygen-enriched condition but those of chemical reaction effects become dominant at highly oxygen-enriched condition. Chemical reaction effects caused the additional flame temperature decrease besides thermal effects and oxygen-leakage increase in non-premixed flame. Specific fuel oxidation path and CO production path is enhanced in spite of overall decrement of fuel consumption rate by chemical reaction effects of$CO_{2}$.

가압 유동층 반응기에서 산소공여입자의 메탄 연소 특성에 미치는 온도, 압력 및 기체체류시간의 영향 (Effects of Temperature, Pressure, and Gas Residence Time on Methane Combustion Characteristics of Oxygen Carrier Particle in a Pressurized Fluidized Bed Reactor)

  • 류호정;박상수;문종호;최원길;이영우
    • 한국수소및신에너지학회논문집
    • /
    • 제23권2호
    • /
    • pp.173-182
    • /
    • 2012
  • Effects of temperature, pressure, and gas residence time on methane combustion characteristics of mass produced oxygen carrier particle (OCN706-1100) were investigated in a pressurized fluidized bed reactor using methane and air as reactants for reduction and oxidation, respectively. The oxygen carrier showed high fuel conversion, high $CO_2$ selectivity, and low CO concentration at reduction condition and very low NO emission at oxidation condition. Moreover OCN706-1100 particle showed good regeneration ability during successive reduction-oxidation cyclic tests up to the 10th cycle. Fuel conversion and $CO_2$ selectivity decreased and CO emission increased as temperature increased. These results can be explained by trend of calculated equilibrium CO concentration. However, $CO_2$ selectivity increased as pressure increased and fuel conversion increased as gas residence time increased.

Kinetics and Mechanisms of the Oxidation of Carbon Monoxide on $Eu_{1-x}Sr_xCoO_{3-y}$ Perovskite Catalysts

  • Dong Hoon Lee;Joon Ho Jang;Hong Seok Kim;Yoo Young Kim;Jae Shi Choi;Keu Hong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권5호
    • /
    • pp.511-516
    • /
    • 1992
  • The catalytic oxidation of CO on perovskite $Eu_{1-x}Sr_xCoO_{3-y}$, has been investigated at reaction temperatures from 100 to $250^{\circ}C$ under stoichiometric CO and $O_2$ partial pressures. The microstructure and Sr-substitution site of the catalyst were studied by means of infrared spectroscopy. The reaction rates were found to be correlated with 1.5-and 1.0-order kinetics with and without a $CO_2$ trap, respectively; first-and 0.5-order with respect to CO and 0.5-order to $O_2$ with the activation energy of 0.37 eV $mol^{-1}$. It was found from IR, ${\sigma}$ and kinetic data that $O_2$ adsorbs as an ionic species on the oxygen vacancies, while CO adsorbs on the lattice oxygens. The oxidation reaction mechanism is suggested from the agreement between IR, ${\sigma}$ and kinetic data.

전자빔 코팅 및 플라즈마 용사에 의한 안정화지르코니아/CoNiCrAlY 계면의 산화거동 (Oxidation Behavior at the Interface between E-beam Coated $ZrO_{2}$-7wt.%$Y_{2}O}_{3}$and Plasma Sprayed CoNiCrAlY)

  • 최원섭;김영도;전형탁;김현태;윤국한;홍경태;박종구;박원식
    • 한국재료학회지
    • /
    • 제8권6호
    • /
    • pp.538-544
    • /
    • 1998
  • 열차폐코팅층의 박리는 세라믹/금속접합층 계면에서 취성이 큰 스피텔의 생성, 금속과 세라믹의 열팽창계수의 차이, 세라믹층의 상변태, 코팅층의 잔류응력에 기인한다. 본 연구에서는 인코넬 713C에 전자빔 코팅 및 플라즈마 용사법으로 코팅된 안정화지르코니아/CoNiCrAIY 계면의 산화거동을 조사하기 위하여 $900^{\circ}C$에서 등온산화시험동안 생성되는 산화막층과 스피넬 생성 거동을 관찰, 분석하였다. 코팅 직후 코팅층에 고르게 분포하고 있는 Co,Ni,Cr,AI,Zr의 원소들이 산화시간에 따라 확산하여 산화반응을 하였다. 초기 20시간의 산화기시간에 안정화지르코니아/CoNiCrAIY 계면에 주요 성분이 $\alpha$-$AI_2O_3$인 산화막층이 생성되었고, CoNiCrAIY층에는 AI의 외부확산으로 인한 AI 결핍지역이 생성되었다. 산화시험동안 $\alpha$-AI2O층이 임계두께까지 성장한 후에 산화막층의 성장속도는 감소하였고, 안정화지르코니아/산화막층 계면에 스피넬, $Cr_2O_3$, $CO_2CrO_4$의 형성으로 인한 크랙이 관찰되었다.

  • PDF

CdO-${\alpha}-Fe_2O_3$촉매상에서 일산화탄소의 산화반응에 대한 CdO의 첨가 효과 (Doping Effect of CdO on the Oxidation of Carbon Monoxide over CdO-${\alpha}-Fe_2O_3$System)

  • 이성한;김용록;김규홍;최재시
    • 대한화학회지
    • /
    • 제29권2호
    • /
    • pp.111-120
    • /
    • 1985
  • 4 mol% Cd-doped ${\alpha}-Fe_2O_3$, 8 mol% Cd-doped ${\alpha}-Fe_2O_3$ 및 12 mol% Cd-doped ${\alpha}-Fe_2O_3$상에서 CO 산화반응이 각기 연구되었다. Cd의 doping level에 관계없이 반응차수는 1.5차이며 CO에 대하여 1차, $O_2$에 대하여 O.5차이다. 350∼$460^{\circ}C$의 반응온도 범위에서 CO산화반응의 활성화 에너지는 10.10∼11.30Kcal/$mol^{-1}$ 이며 Cd-doped${\alpha}-Fe_2O_3$의 전기전도도 데이타와 반응속도 데이타로부터 CO산화반응 메카니즘이 규명되었다. 특히 Cd doping 효과로부터 ${\alpha}-Fe_2O_3$의 촉매활성이 격자산소의 공위에 포획되어 있는 전자의 여기(excitation)에 기인된다는 사실이 밝혀졌으며 반응분자들의 흡착자리를 알게 되었다.

  • PDF

디젤엔진 배출가스 저감을 위한 CO, $C_3H_6$의 산화반응에서 Y-제올라이트 담체의 영향 (Effects of Y-Zeolite as a Support on CO, $CC_3H_6$ Oxidation for Diesel Emission Control)

  • 김문찬
    • 한국대기환경학회지
    • /
    • 제13권1호
    • /
    • pp.91-98
    • /
    • 1997
  • Y-zeolite and ${\gamma}$-Al$_2$O$_3$ were used as supports on CO and $C_3$H$_{6}$ oxidation for diesel emission control. The catalysts composed of Pd and Pt as active components were wash coated on honeycomb type ceramic substrate. The oxidation of CO and $C_3$H$_{6}$ was carried out over prepared honeycomb in a fixed bed continuous reactor in the temperature range of 20$0^{\circ}C$~50$0^{\circ}C$ and 20,000 GHSV (h$^{-1}$ ). Surface area of Y-zeolite was larger than that of ${\gamma}$-Al$_2$O$_3$ due to channel structure of Y-zeolite. Therefore, high conversion of CO and $C_3$H$_{6}$ could be obtained because of good dispersion of active metals over Y-zeolite. The honeycomb used Y-zeolite as a support showed higher $C_3$H$_{6}$ conversion than that of ${\gamma}$-Al$_2$O$_3$ due to better cracking and isomerization activity of Y-zeolite. PdPt catalyst showed high conversion of CO and $C_3$H$_{6}$ at low temperature region, 20$0^{\circ}C$~30$0^{\circ}C$, for their synergy effects. PdPt/Y-Zeolite catalyst could achieve more than 80% conversion of $C_3$H$_{6}$ at 30$0^{\circ}C$. The use of Y-zeolite as a support increased CO and $C_3$H$_{6}$ conversion, and decreased SO$_2$ conversion very effectively. Y-zeolite found to have a good adaptability as a support for the diesel emission after treatment system.

  • PDF

Effect of ${\gamma}$-Ray Irradiation on Surface Oxidation of Ultra High Molecular Weight Polyethylene/Zirconia Composite Prepared by in situ Ziegler-Natta Polymerization

  • Kwak, Soon-Jong;Noh, Dong-Il;Chun, Heung-Jae;Lim, Youn-Mook;Nho, Young-Chang;Jang, Ju-Woong;Shim, Young-Bock
    • Macromolecular Research
    • /
    • 제17권8호
    • /
    • pp.603-608
    • /
    • 2009
  • Novel ultra-high molecular weight polyethylene (UHMWPE)/zirconia composites were previously prepared by the in situ polymerization of ethylene using a Ti-based Ziegler-Natta catalyst supported on to the surface of zirconia, as a bearing material for artificial joints. Tribological tests revealed that a uniform dispersion of zirconia in UHMWPE markedly increased the wear resistance. The effects of zirconia content on the oxidation behavior of the ${\gamma}$-ray-treated UHMWPE/zirconia composite surfaces were examined. The oxidation index that estimates the oxidation degree as the content of total carbonyl compounds was monitored using Fourier transform infrared spectroscopy-attenuated total reflectance. The changes in the surface composition due to the oxidation were confirmed by electron spectroscopy for chemical analysis. The extent of oxidation decreased with increasing zirconia content, which was attributed to the increased crystallinity as well as the decreased polymer portion of the UHMWPE/zirconia composites.

Mn-Cu/Al2O3 촉매 상에서 NO, CO 및 CH4 동시 산화 (Simultaneous Oxidation of NO, CO, and CH4 over Mn-Cu/Al2O3 Catalyst)

  • 정지은;이창용
    • 공업화학
    • /
    • 제35권1호
    • /
    • pp.1-7
    • /
    • 2024
  • NO, CO 및 CH4의 동시 산화를 위한 4 종의 Mn-M/Al2O3 (M = Cu, Fe, Co, Ce) 촉매를 제조하여 산화 활성을 비교하고, 동시 산화활성이 가장 높은 Mn-Cu/Al2O3 촉매에 대해 XRD, Raman, XPS, O2-TPD 분석을 수행하였다. XRD 분석 결과, Mn-Cu/Al2O3 촉매에서는 담지된 Mn과 Cu는 복합산화물로 존재하였다. Raman 및 XPS 분석을 통해 Mn-Cu/Al2O3 촉매는 Mn-O-Cu 결합의 형성 과정에서 Mn 이온과 Cu 이온 간의 전자 수수가 일어남을 알 수 있었다. XPS O 1s 및 O2-TPD 분석을 통해 Mn-Cu/Al2O3 촉매는 Mn/Al2O3 촉매에 비해 이동성이 우수한 흡착산소 종이 증가했음을 알 수 있었다. Mn-Cu/Al2O3 촉매의 높은 동시 산화 활성은 이러한 결과에 기인한다고 판단된다. Mn-Cu/Al2O3 촉매 상에서 NO는 CO와 CH4 산화를 촉진하지만, NO 산화는 억제되었다. 이는 NO로부터 산화된 NO2가 CO 및 CH4의 산화제로 사용되었기 때문이라고 추측된다. CO와 CH4의 산화 반응은 경쟁하지만 촉매 활성 온도가 다르기 때문에 그 효과가 두드러지지 않았다.

MBR 공정 적용을 위한 전처리 오존산화에 의한 형광증백제 제거 연구 (Study on the Removal of Fluorescent Whitening Agent by Pretreatment Ozone Oxidation for MBR Process Application)

  • 최장승;류승한;신동훈;이재훈;이수철;김성기;류재용;신원식;이슬기;박민수
    • 한국염색가공학회지
    • /
    • 제29권1호
    • /
    • pp.11-17
    • /
    • 2017
  • In this study, ozone oxidation experiment was carried out for the removal of fluorescent whitening agent which is widely used in textile dyeing and paper industry. The stilbene fluorescent whitening agent has been industrialized since the earliest, and the amount of current production is the highest. Due to the characteristics of the fluorescent whitening agent that can not be removed by conventional wastewater treatment methods, the fluorescent whitening agent in wastewater treatment has difficulty in using as recycled water in the process. Pre-treatment ozone oxidation experiment was conducted prior to the introduction of Membrane Bio Reactor(MBR) treatment process by converting biodegradable materials into biodegradable materials. The removal efficiencies of fluorescent whitening agents, a diaminostilbenedisulfonic acid derivative by ozone oxidation were evaluated by $UV_{254}$ Scan, $COD_{Mn}$, T-N and color using a synthetic wastewater sample ($COD_{Mn}=433.0mg/{\ell}$) and paper and paper mill wastewater ($COD_{Mn}=157.2mg/{\ell}$).