• Title/Summary/Keyword: CO II gene

Search Result 96, Processing Time 0.03 seconds

Establishment of an Efficient Agrobacterium Transformation System for Eggplant and Study of a Potential Biotechnologically Useful Promoter

  • Claudiu Magioli;Ana Paula Machado da Rocha;Pinheiro, Marcia-Margis;Martins, Gilberto-Sachetto;Elisabeth Mansur
    • Journal of Plant Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.43-49
    • /
    • 2000
  • An efficient and reliable Agrobacterium transformation procedure based on TDZ (thidiazuron)-induced organogenesis was established and applied to six Brazilian eggp1ant varieties. Optimum transgenic plants recovery was achieved upon the study of the following parameters affecting transformation efficiency, using F-100 variety as a model: i) explant source; ii) pre-culture period; iii) physical state of the pre-culture medium and iv) coculture conditions. The highest frequency of kanamycin-resistant calli derived from leaf explants (5%) was obtained without a pre-culture period and co-cultivation for 24 h in liquid medium followed by five days on solid RM (regeneration medium). For cotyledon explants, best results were achieved upon a pre-culture of 24 h in liquid RM and a co-cultivation period of 24 h in liquid RM followed by three days in solid RM, resulting in a transformation Sequency of 22.7%. Kanamycin-resistant organogenic calli were also obtained from cultivars Emb, Preta Comprida, Round nose Shaded, Campineira and Florida Market. The expression pattern of an epidermis-specific promoter was studied using transformants expressing a chimaeric construct comprised by the promoter Atgrp-5 transcriptionally fused to the coding region of the gus gene. The expression pattern was similar to that previously observed in tobacco and Arabidopsis thaliana, with preferential expression at the epidermis and the stem phloem. These results support the idea that the Atgrp-5 promoter can be used to drive defense genes in these tissues, which are sites of pathogen interaction and spread, in programs for the genetic improvement of eggplant.

  • PDF

Molecular Characterization of a cDNA Encoding Chlorophyll a/b Binding Protein (Cab) from Panax ginseng C. A. Meyer (고려인삼 Chlorophyll a/b Binding Protein(Cab) 유전자의 동정 및 분자적인 특성분석)

  • In Jun Gyo;Lee Bum Soo;Youn Jae-Ho;Son Hwa;Kim Se Young;Yang Deok Chun
    • Korean Journal of Plant Resources
    • /
    • v.18 no.3
    • /
    • pp.441-449
    • /
    • 2005
  • Photo system II (PSII) is one of the two photosynthetic reaction centers in the chloroplast of higher plants. The chlorophyll a/b-light harvesting complex serves primarily as an antenna for PSII. We isolated a cDNA that encodes a chlorophyll a/b-binding protein (Cab) from Panax ginseng. The small subunit consists of 935 nucleotides long and has an open reading frame of 795 bp with the deduced amino acid of 265 residues (pI 5.63), 28.6 kDa. The deduced amino acid sequence matched to the previously reported Cab genes. Their degree of amino acid identity ranged from 68 to $92\%$. Phylogenetic analysis based on the amino acid residues was showed that the ginseng Cab gene was grouped with P. persica (AAC34983), A. thaliana (AAD28771), G. hirsutum (CAA38025), G. max (AAL29886), and V. radiate (AAF89205).

NITRIC OXIDE AND DENTAL PULP (NITRIC OXIDE와 치수)

  • Kim, Young-Kyung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.5
    • /
    • pp.543-551
    • /
    • 2002
  • Nitric oxide (NO) is a small molecule (mol. wt. 30 Da) and oxidative free radical. It is uncharged and can therefore diffuse freely within and between cells across membrane. Such characteristics make it a biologically important messenger in physiologic processes such as neurotransmission and the control of vascular tone. NO is also highly toxic and is known to acts as a mediator of cytotoxicity during host defense. NO is synthesized by nitric oxide synthase (NOS) through L-arginine/nitric oxide pathway which is a dioxygenation process. NO synthesis involves several participants, three co-substrates, five electrons, five co-factors and two prosthetic groups. Under normal condition, low levels of NO are synthesized by type I and III NOS for a short period of time and mediates many physiologic processes. Under condition of oxidant stress, high levels of NO are synthesized by type II NOS and inhibits a variety of metabolic processes and can also cause direct damage to DNA. Such interaction result in cytostasis, energy depletion and ultimately cell death. NO has the potential to interact with a variety of intercellular targets producing diverse array of metabolic effects. It is known that NO is involved in hemodynamic regulation, neurogenic inflammation, re-innervation, management of dentin hypersensitivity on teeth. Under basal condition of pulpal blood flow, NO provides constant vasodilator tone acting against sympathetic vasoconstriction. Substance P, a well known vasodilator, was reported to be mediated partly by NO, while calcitonin-gene related peptide has provided no evidence of its relation with NO. This review describes the roles of NO in dental pulp in addition to the known general roles of it.

MiR-29a and MiR-140 Protect Chondrocytes against the Anti-Proliferation and Cell Matrix Signaling Changes by IL-1β

  • Li, Xianghui;Zhen, Zhilei;Tang, Guodong;Zheng, Chong;Yang, Guofu
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.103-110
    • /
    • 2016
  • As a degenerative joint disease, osteoarthritis (OA) constitutes a major cause of disability that seriously affects the quality of life of a large population of people worldwide. However, effective treatment that can successfully reverse OA progression is lacking until now. The present study aimed to determine whether two small non-coding RNAs miR-29a and miR-140, which are significantly down-regulated in OA, can be applied together as potential therapeutic targets for OA treatment. MiRNA synergy score was used to screen the miRNA pairs that potentially synergistically regulate OA. An in vitro model of OA was established by treating murine chondrocytes with IL-$1{\beta}$. Transfection of miR-29a and miR-140 via plasmids was investigated on chondrocyte proliferation and expression of nine genes such as ADAMTS4, ADAMTS5, ACAN, COL2A1, COL10A1, MMP1, MMP3, MMP13 and TIMP metallopeptidase inhibitor 1 (TIMP1). Western blotting was used to determine the protein expression level of MMP13 and TIMP1, and ELISA was used to detect the content of type II collagen. Combined use of miR-29a and miR-140 successfully reversed the destructive effect of IL-$1{\beta}$ on chondrocyte proliferation, and notably affected the MMP13 and TIMP1 gene expression that regulates extracellular matrix. Although co-transfection of miR-29a and miR-140 did not show a synergistic effect on MMP13 protein expression and type II collagen release, but both of them can significantly suppress the protein abundance of MMP13 and restore the type II collagen release in IL-$1{\beta}$ treated chondrocytes. Compared with single miRNA transfection, cotransfection of both miRNAs exceedingly abrogated the suppressed the protein production of TIMP1 caused by IL-$1{\beta}$, thereby suggesting potent synergistic action. These results provided1novel insights into the important function of miRNAs' collaboration in OA pathological development. The reduced MMP13, and enhanced TIMP1 protein production and type II collagen release also implies that miR-29a and miR-140 combination treatment may be a possible treatment for OA.

Induction of Nrf2/ARE-mediated cytoprotective genes by red ginseng oil through ASK1-MKK4/7-JNK and p38 MAPK signaling pathways in HepG2 cells

  • Bak, Min Ji;Truong, Van-Long;Ko, Se-Yeon;Nguyen, Xuan Ngan Giang;Jun, Mira;Hong, Soon-Gi;Lee, Jong-Won;Jeong, Woo-Sik
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.423-430
    • /
    • 2016
  • Background: The induction of cellular defensive genes such as phase II detoxifying and antioxidant enzymes is a highly effective strategy for protection against carcinogenesis as well as slowing cancer development. Transcription factor Nrf2 (nuclear factor E2-related factor 2) is responsible for activation of phase II enzymes induced by natural chemopreventive compounds. Methods: Red ginseng oil (RGO) was extracted using a supercritical $CO_2$ extraction system and chemical profile of RGO was investigated by GC/MS. Effects of RGO on regulation of the Nrf2/antioxidant response element (ARE) pathway were determined by ARE-luciferase assay, western blotting, and confocal microscopy. Results: The predominant components of RGO were 9,12-octadecadienoic acid (31.48%), bicyclo[10.1.0] tridec-1-ene (22.54%), and 22,23-dihydrostigmasterol (16.90%). RGO treatment significantly increased nuclear translocation of Nrf2 as well as ARE reporter gene activity, leading to upregulation of heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1. Phosphorylation of the upstream kinases such as apoptosis signal-regulating kinase (ASK)1, mitogen-activated protein kinase (MAPK) kinase (MKK)4/7, c-Jun N-terminal kinase (JNK), and p38 MAPK were enhanced by treatment with RGO. In addition, RGO-mediated Nrf2 expression and nuclear translocation was attenuated by JNK inhibitor SP600125 and p38 MAPK inhibitor SB202190. Conclusion: RGO could be used as a potential chemopreventive agent, possibly by induction of Nrf2/ARE-mediated phase II enzymes via ASK1-MKK4/7-JNK and p38 MAPK signaling pathways.

Genetic Transformation of Watermelon (Citrullus vulgaris Schard.) by Callus Induction (캘러스 유도에 의한 수박 형질전환)

  • Kwon, Jung-Hee;Park, Sang-Mi;Lim, Mi-Young;Shin, Yoon-Sup;Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.37-45
    • /
    • 2007
  • The genetic transformation of watermelon by Agrobacterium has been known very difficult and a few successful cases have been reported by obtaining the direct shoot formation. However, since this direct shoot formation is not guaranteed the stable transformation, the stable transformation with reproducibility is required by a different approach such as a callus induced manner. The best conditions for inducing the callus from cotyledon and root explants of watermelon were 2 mg/L zeatin + 0.1 mg/L IAA and 2 mg/L BA + 0.1 mg/L 2,4-D, respectively. The GFP expression in the callus was identified and monitored through fluorescent microscopy after transformation with pmGFP5-ER vector. Paromomycin rather than kanamycin was used for selecting the nptll gene expression because it was more effective to select the watermelon explants. Four different callus types were observed and the solid green callus showed stronger GFP expression. The highest frequency of GFP expression in the callus developed from cotyledon was 9.0% (WM8 inbred line), while the highest frequency from root was 8.3% (WM6 inbred line). The WMV-CP was transformed using the method of GFP transformation and the genetic transformation of WMV-CP was confirmed by PCR and Southern blot analysis. Here we present a system for callus induction of watermelon explant and the callus induced method would facilitate the establishment of stable watermelon transformation.

Expression of CP4 5-Enol-Pyruvylshikimate-3- Phosphate Synthase Transgene in Inbred Line of Korean Domestic Maize (Zea may L.) (국내 옥수수 순계주에서 CP4 5-Enol- Pyruvylshikimate-3- Phosphate Synthase 유전자의 발현)

  • Cho, Mi-Ae;Kwon, Suk-Yoon;Kim, Jin-Seog;Lee, Byoung-Kyu;Moon, Choo-Yeun;Choi, Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.375-380
    • /
    • 2007
  • This study was conducted to develop herbicide-resistance domestic maize plants by introducing the CP4 5-enol-pyruvylshikimate-3-phosphate synthase (CP4 EPSPS) gene using Agrobacterium tumefaciens-mediated immature embryo transformation. Immature embryos of five genotypes (HW1, KL103, HW3, HW4, HW7) were co-cultivated with strains Agrobacterium tumefaciens (strain C58C1) containing the binary vector (pCAMBIA2300) carrying Ubiquitin promoter-CP4 EPSPS gene and Cauliflower mosaic virus 35S (CaMV35S) promoter-nptll gene conferring resistance to paromomycin as a selective agent. The presence and expression of CP4 EPSPS transgene were confirmed by PCR, RT-PCR and Northern blot analysis, respectively. Also, the resistance to glyphosate in the transgenic maize ($T_1$) was analyzed by shikimate accumulation assay. The frequency (%) of paromomycin-resistance callus was 0.37, 0.03, 2.20, 2.37, and 0.81% in pure lines HW1, KL103, HW3, HW4 and HW7, respectively. EPSP transgene sequences were amplified in putative transgenic plants that regenerated from paromomycin-resistance calli of two inbred lines (HW3, HW4). Of them, RT-PCR and Northern blot analyses revealed that the transgene was only expressed in two transgenic events (M266, M104) of HW4 inbred line, and a mild glyphosate resistance of transgenic event (M266) was confirmed by the lower shikimate accumulation in leaf segments. These results demonstrate that transgenic maize with herbicide-resistance traits in Korean genotype can be genetically obtained.

Microarray analysis of gene expression in raw cells treated with scolopendrae corpus herbal-acupuncture solution (蜈蚣(오공) 약침액(藥鍼液)이 LPS로 처리된 RAW 세포주(細胞柱)의 유전자(遺傳子) 발현(發顯)에 미치는 영향(影響))

  • Bae, Eun-Hee;Lee, Kyung-Min;Lee, Bong-Hyo;Lim, Seong-Chul;Jung, Tae-Young;Seo, Jung-Chul
    • Korean Journal of Acupuncture
    • /
    • v.23 no.3
    • /
    • pp.133-160
    • /
    • 2006
  • Objectives : Scolopendrae Corpus has a broad array of clinical applications in Korean medicine, including treatment of inflammatory conditions such as arthritis. To explore the global gene expression profiles in human Raw cell lines treated with Scolopendrae Corpus herbal-acupuncture solution (SCHAS), cDNA microarray analysis was performed. Methods : The Raw 264.7 cells were treated with lipopolysaccharide (LPS), SCHAS, or both. The primary data was normalized by the total spots of intensity between two groups, and then normalized by the intensity ratio of reference genes such as housekeeping genes in both groups. The expression ratio was converted to log2 ratio. Normalized spot intensities were calculated into gene expression ratios between the control and treatment groups. Greater than 2 fold changes between two groups were considered to be of significance. Results : Of the 8 K genes profiled in this study, with a cut-off level of two-fold change in the expression, 20 genes (BCL2-related protein A1, MARCKS-like 1, etc.) were upregulated and 5 genes (activated RNA polymerase II transcription cofactor 4, calcium binding atopy-related autoantigen 1, etc.) downregulated following LPS treatment. 139 genes (kell blood group precursor (McLeod phenotype), ribosomal protein S7, etc.) were upregulated and 42 genes (anterior gradient 2 homolog (xenopus laevis), phosphodiesterase 8B, etc.) were downregulated following SCHAS treatment. And 10 genes (yeast saccharomyces cerevisiae intergeneic sequence 4-1, mitogen-activated protein kinase 1, etc.) were upregulated and 8 genes (spermatid perinuclear RNA binding protein, nuclear receptor binding protein 2, etc.) were downregulated following co-stimulation of SCHAS and LPS. Discussions : It is thought that microarrays will play an ever-growing role in the advance of our understanding of the pharmacological actions of SCHAS in the treatment of arthritis. But further studies are required to concretely prove the effectiveness of SCHAS.

  • PDF

Introduction and Expression of PAP gene using Agrobacterium in Scrophularia buergeriana Miquel (Agrobacterium을 이용한 PAP 유전자의 현삼으로 도입 및 형질발현)

  • Yu, Chang-Yeon;Seong, Eun-Soo;Lim, Jung-Dae;Huang, Shan-Ai;Chae, Young-Am
    • Korean Journal of Medicinal Crop Science
    • /
    • v.9 no.2
    • /
    • pp.156-165
    • /
    • 2001
  • Exogeneous application of pokeweed antiviral protein (PAP), a ribosomal-inacivating protein in the cell wall of Phytolacca americana (pokeweed) protects heterologous plants from viral and fungal infection. A cDNA clone of PAP introduced into Scrophularia buergeriana Miquel by thransformation with Agrobacterium tumefaciences. For plant transformation, explants were precultured on shoot induction medium without kanamycin for 2-5 day, and then they were cocultured with Agrobacterium for 10 minutes. The explants were placed on co culture medium in dark condition, $28^{\circ}C$ for 2days. After explants were washed in MS liquid medium, they were transferred into selection medium including kanamycin 50mg/L (MS salts+1mg/ l BAP+2mg/ l TDZ+0,2mg/ l NAA+MS vitamin+3% sucrose+0.8% agar, pH5.8). From PCR analysis, NPT II band was confirmed in transgenic plant genome and showed resistance against fungi in antifungal activity test. Micro assay to which protein extracted from transgenic line were added, revealed hyphae growth inhibition and no spore germination at high concentration. The characteristics of inhibited hyphae was represented transparent and thin. Expression of PAP in transgenic plants offers the possibility of developing resistance to viral and fungal infection.

  • PDF

Several Factors Affecting Transformation Efficiency of tall Fescue (톨페스큐의 효율적인 형질전환을 위한 몇 가지 요인의 영향)

  • 김진수;이상훈;이병현
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.237-242
    • /
    • 2004
  • A system for the production of transgenic plants has been developed for tall fescue (Festuca arundinacea Schreb.) via Agrobacterium-mediated transformation of mature seed-derived embryogenic callus. Seed-derived calli were infected and co-cultured with Agrobacterium EHA101 carrying standard binary vector pIG121Hm encoding the hygromycin phosphotransferase (HPT), neomycin phosphotransferase II (NPTII) and intron-containing $\beta$-glucuronidase (intron-GUS) genes in the T-DNA region. The effects of several factors on transformation and the expression of the GUS gene were investigated. Inclusion of $200\mu\textrm{M}$ acetosyringone (AS) in inoculation and co-culture media lead to a increase in stable transformation efficiency. Transformation efficiency was increased when embryogenic calli were co-cultured for 5 days on the co-culture medium. The highest transformation efficiency was obtained when embryogenic calli were inoculated with Agyobacterium in the presence of 0.1% Tween20 and $200\mu\textrm{M}$ AS. Hygromycin resistant calli were developed into complete plants via somatic embryogenesis. GUS histochemical assay and Southern blot analysis of transgenic plants demonstrated that transgenes were successfully integrated into the genome of tall fescue.