• Title/Summary/Keyword: CO Hydrogenation

Search Result 79, Processing Time 0.02 seconds

The $CO_{2}$ Hydrogenation toward the Mixture of Methanol and Dimethyl Ether: Investigation of Hybrid Catalysts

  • 준기원;K.S. Rama Rao;정미희;이규완
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.466-470
    • /
    • 1998
  • Catalytic hydrogenation of carbon dioxide for the simultaneous synthesis of methanol and dimethyl ether (together called oxygenates) over a combination of methanol synthesis and methanol dehydration catalysts has been studied. Various methanol synthesis and methanol dehydration catalysts were examined for this reaction. The addition of promotors like $Ga_2O_3\; and\; Cr_2O_3$ to Cu/ZnO catalyst gave much more enhanced yield on the formation of oxygenates. From the results, the promotional effect of $Cr_2O_3$ has been explained in terms of increase in the intrinsic activity of Cu while that of $Ga_2O_3$ being increase in the dispersion of Cu. Among the methanol dehydration catalysts examined, the solid acids bearing high population of intermediate-strength acid sites were found to be very effective for the production of oxygenates. HY zeolite which contains strong acid sites produce small amount of hydrocarbons as by-products. However, CuNaY zeolite in which the presence of strong acid sites are minimum gives very high oxygenates yield without the formation of hydrocarbons.

Promotors in Copper-Chromium Oxide Catalyst for Furfural Hydrogenation (Furfural 수소화반응에서 구리-크롬산화물 촉매에 대한 첨가제의 효과)

  • Chon Hakze;Seo, Gon
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.152-160
    • /
    • 1979
  • The promoting effect of Ba or Sr addition was investigated for furfural hydrogenation reaction over copper-chromium oxide catalysts. X-ray diffraction patterns showed the appearance of $BaCrO_4$ and $SrCrO_4$ phases in Ba, and Sr promoted copper-chromium oxide catalysts. For both Ba and Sr promoted catalysts, the activity decline with reaction time was much smaller compared to that of unpromoted catalyst and copper-chromium oxide catalyst dispersed on silica, reproducible EPR signals of Cr(V) were observed when CO was adsorbed. The promoting effect of Ba addition can be interpreted in terms of active sites dispersion and stabilization.

  • PDF

Selectivity Changes in CO Hydrogenation over Potassium Added Titania-supported Cobalt Catalysts (티타니아 담지 코발트 촉매를 이용한 일산화탄소 수소화 반응에서 칼륨첨가에 의한 선택성 변화)

  • Lee, Dong-Keun;Ahn, Jou-Hyeon
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.100-105
    • /
    • 1990
  • Small amounts of potassium were added to the titania - supported cobalt catalysts in order to produce higher and olefinic hydrocarbons in CO hydrogenation. Titania and potassium played important roles not only for the enhancement of the production of higher and olefinic hydrocarbons, but also for the prevention of the catalyst deactivation by carbon deposits. Titania support induced the so - called SMSI, and potassium seemed to act as an electronic modifier, giving rise to an electron enrichment of the metallic phase.

  • PDF

Study on the HDDR Characteristics of the Nd-Fe(-Co)-B(-Ga-Zr)-type Alloys

  • Shon, S.W.;Kwon, H.W.;Kang, D.I.;Kim, Yoon.B.;Jeung, W.Y.
    • Journal of Magnetics
    • /
    • v.4 no.4
    • /
    • pp.131-135
    • /
    • 1999
  • The HDDR characteristics of the Nd-Fe-B-type isotropic and anisotropic HDDR alloys were investigated using three types of alloys: alloy A $(Nd_{12.6}Fe_{81.4}B_6), alloy B (Nd_{12.6}Fe_{81.3}B_6Zr_{0.1}), and alloy C (Nd_{12.6}Fe_{68.8}Co_{11.5}B_6Ga_{1.0}Zr_{0.1}$). The alloy A is featured with the isotropic HDDR character, while alloy B and C are featured with the anisotropic HDDR character. Hydrogenation and disproportionation characteristics of the alloys were examined using DTA under hydrogen gas. Recombination characteristics of the alloys were examined by observing the coercivity variation as a function of recombination time. The present study revealed that the alloy C exhibits slightly higher hydrogenation and disproportionation temperatures compared to the alloy A and B. Recombination of the anisotropic alloy B and C takes place more rapidly with respect to the isotropic alloy A. The intrinsic coercivities of the recombined materials rapidly increased with increasing the recombination time and then showed a peak, after which the coercivities decreased gradually. The degraded coercivity was, however, recovered significantly on prolonged recombination treatment. Compared with the isotropic HDDR alloy A the anisotropic HDDR alloy B and C are notable for their greater recovery of coercivity. The significant recovery of coercivity was accounted for the in terms of the development of well-defined smooth grain boundary between the recombined grains on prolonged recombination.

  • PDF

Syntheses and Reactions of Iridium Complexes Containing Mixed Phosphine-Olefin Ligand: (3-(Diphenylphosphino)propyl)(3-butenyl)phenylphosphine

  • Young-ae W. Park;Devon W. Meek
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.524-528
    • /
    • 1995
  • The reaction of [IrCl(cod)]2 with ppol ligand, Ph2PCH2CH2CH2P(Ph)CH2CH2CH=CH2, in ethanol gives an iridium complex, whose structure is converted from an ionic form, [Ir(cod)(ppol)]Cl·2C2H5OH (1),in polar solvents (ethanol, methanol and acetonitrile), to a molecular form, [IrCl(cod)(ppol)], in non-polar solvents (benzene and toluene). The cationic complexes, [Ir(cod)(ppol)]AsF6·1/2C2H5OH and [Ir(cod)(ppol)]PF6·1/2CH3CN, were prepared to compare with the ionic form by 31P NMR spectroscopy. When carbon monoxide is introduced to 1, cod is replaced by CO to give the 5-coordinated complex, [IrCl(CO)(ppol)]. Hydrogenation of 1-octene was not successful in the presence of 1. In order to verify the reason for 1 not behaving as a good catalyst for hydrogenation, electrophilic reactions with HCl, I2 and HBF4·etherate were performed, which yielded the oxidative addition product, [IrHCl2(ppol)], the substitution product, [IrI(cod)(ppol)], and another cationic product, [Ir(cod)(ppol)]BF4, respectively. Thus, the iridium complex is not sufficiently basic to activate hydrogen atoms or the olefin of the ppol ligand.

Catalytic Reactions of 3-Phenyl-2-propen-1-ol with Perchloratocarbonylbis (triphenylphosphine) rhodium (I)$^\dag$

  • Park, Jeong-Han;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.324-328
    • /
    • 1987
  • Reaction of Rh $(ClO_4)(CO)(PPh_3)_2$ (1) with trans-$C_6H_5CH = CHCH_2OH$ (2) produces a new cationic rhodium(Ⅰ) complex, $[Rh(trans-C_6H_5CH = CHCHO)(CO)(PPh_3)_2]ClO_4$ (3) where 2 is coordinated through the oxygen atom but not through the olefinic group. At room temperature under nitrogen, complex 1 catalyzes dehydrogenation, hydrogenolysis, and isomerization of 2 to give $trans-C_6H_5CH$ = CHCHO (4), trans-$C_6H_5CH = CHCH_3$ (5) and $C_6H_5CH_2CH_2CHO$ (6), respectively, and oligomerization of 2 whereas under hydrogen, complex 1 catalyzes hydrogenation of 2 to give $C_6H_5CH_2CH_2CH_2OH$ (7) and hydrogenolysis of 2 to 5 which is further hydrogenated to $C_6H_5CH_2CH_2CH_3$ (8). The dehydrogenation and hydrogenolysis of 2 with 1 suggest an interaction between the rhodium and the oxygen atom of 2, whereas the isomerization and hydrogenation of 2 with 1 indicate an interaction between the rhodium and the olefinic system of 2.

Copper/Nickel/Manganese Doped Cerium Oxides Based Catalysts for Hydrogenation of CO2

  • Toemen, Susilawati;Bakar, Wan Azelee Wan Abu;Ali, Rusmidah
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2349-2356
    • /
    • 2014
  • The recycling technology by the catalytic conversion is one of the most promising techniques for the $CO_2$ treatment of coal burning power plant flue gases. The conversion of $CO_2$ to valuable product of $CH_4$ can be used as a fuel to run the turbine for electricity generation. Through this technique, the amount of coal needed for the combustion in a gas turbine can be reduced as well as $CO_2$ emissions. Therefore, a series of catalysts based on cerium oxide doped with copper, nickel and manganese were prepared by impregnation method. From the characterization analysis, it showed that the prepared catalysts calcined at $400^{\circ}C$ were amorphous in structure with small particle size in the range below 100 nm. Meanwhile, the catalyst particles were aggregated and agglomerated with higher surface area of $286.70m^2g^{-1}$. By increasing the calcination temperature of catalysts to $1000^{\circ}C$, the particle sizes were getting bigger (> 100 nm) and having moderate crystallinity with lower surface area ($67.90m^2g^{-1}$). From the catalytic testing among all the prepared catalysts, Mn/Ce-75/$Al_2O_3$ calcined at $400^{\circ}C$ was assigned as the most potential catalyst which gave 49.05% and 56.79% $CO_2$ conversion at reaction temperature of $100^{\circ}C$ and $200^{\circ}C$, respectively.

Synthesis of C9-Alcohol through C9-Aldehyde Hydrogenation over Copper Catalysts (구리 촉매 상에서 C9-알데히드의 수소화 반응에 의한 C9-알코올 합성)

  • Park, Young-Kwon;Noh, Sang Gyun;Cho, Kyu Sang;Jeon, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.363-368
    • /
    • 2006
  • This study selected the optimal catalyst for the process of producing $C_9$-alcohol by hydrogenating $C_9$-aldehyde, and carried out an experiment in order to establish the operating condition for maximizing the yield of $C_9$-alcohol. The BET surface area and the specific area of copper were most excellent in $CuO/ZnO/Al_2O_3$ (60:30:10 wt%) catalyst produced using acetate as a precursor of copper and $Na_2CO_3$ as a precipitant, and the catalyst also showed the highest performance in $C_9$-aldehyde hydrogenation. Using a trickle bed reactor loaded with optimized catalyst, we attained 94.1 wt% yield of $C_9$-alcohol under the condition of $175^{\circ}C$, 800 psi and $WHSV=3hr^{-1}$. According to the result of comparing with other catalysts used in the hydrogenation of aldehyde, the catalyst showed similar performance to that of Ni/kieselghur and higher than that of $Cu-Ni-Cr-Na/Al_2O_3$ and $Ni-Mo/Al_2O_3$. According to the result of examining the stability of the catalyst through a long-term catalysis test, the yield of $C_9$-alcohol decreased slowly after around 72 hours due to the increasing production of high boiling-point byproducts.

The Effect of K Promoter on Ni-Co (Bimetallic) Catalyst for Dry Methane Reforming

  • Dharmasaroja, Nichthima;Phongaksorn, Monrudee;Tungkamani, Sabaithip;Ratana, Tanakorn;Sornchammi, Thana
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.110-117
    • /
    • 2015
  • 10 wt% (Ni-Co) catalysts with different Ni and Co content : 10%Ni, 9%Ni1%Co, 7%Ni3%Co, 5%Ni5%Co, 3%Ni7%Co, and 10%Co; were prepared using sol-gel method followed by incipient wetness impregnation method. To investigate the catalytic activity including the stability, dry methane reforming were demonstrated over the pelletized catalysts at $620^{\circ}C$ under atmospheric pressure in a $CH_4:CO_2:N_2$ feedstock for 360 min. The results showed that bimetallic catalysts with the Co content equal to or greater than 3% were more stable than monometallic catalysts (10%Ni and 10%Co). The temperature programmed hydrogenation interpreted that the additional of Co into Ni catalyst improved the carbon resistance from methane cracking. Promoted this type of bimetallic catalyst using 1wt% K (trimetallic catalyst) prevented the carbon formation on the catalyst. The temperature programmed desorption of $CO_2$ indicated that this trimetallic catalyst has a greater number of strong basic sites. Moreover, the appearance of K lowered the number of weak basic sites and decreased the conversion of methane by 12 %.

HDDR Characteristics and Magnetic Properties of Nd15(Fe1-xCox)77B8(x=0-0.6) Alloys

  • Kwon, H.W.
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.127-131
    • /
    • 2002
  • HDDR characteristics and magnetic properties of $Nd_{15}{(Fe_{1-x}Co_{x})}_{77}B_{8}$(x=0-0.6) alloys were investigated. The effect of applying magnetic field during the recombination step on the anisotropic nature of the HDDR-treated material was also examined. The $Nd_{15}{(Fe_{1-x}Co_{x})}_{77}B_{8}$ phase in the Nd-Fe-B alloys with high Co-substitution alloy had remarkably enhanced phase stability. The $Nd_{15}{(Fe_{1-x}Co_{x})}_{77}B_{8}$(x=0-0.6) alloys with high Co-substitution could be HDDR-treated successfully by only using high pressure hydrogen. However, these alloys had no appreciable coercivity. The poor coercivity of the HDDR-treated $Nd_{15}{(Fe_{1-x}Co_{x})}_{77}B_{8}$(x=0-0.6) alloys with high Co-substitution was attributed to the $Nd{(Fe,Co)}_2$ phase in the alloys. The magnetic filed applied during the recombination step had little effect on the anisotropic nature of the HDDR-treated powder.