• Title/Summary/Keyword: CNT spray

Search Result 48, Processing Time 0.031 seconds

Highly Stretchable and Sensitive Strain Sensors Fabricated by Coating Nylon Textile with Single Walled Carbon Nanotubes

  • Park, Da-Seul;kim, Yoonyoung;Jeong, Soo-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.363.2-363.2
    • /
    • 2016
  • Stretchable strain sensors are becoming essential in diverse future applications, such as human motion detection, soft robotics, and various biomedical devices. One of the well-known approaches for fabricating stretchable strain sensors is to embed conductive nanomaterials such as metal nanowires/nanoparticles, graphene, conducting polymer and carbon nanotubes (CNTs) within an elastomeric substrate. Among various conducting nanomaterials, CNTs have been considered as important and promising candidate materials for stretchable strain sensors owing to their high electrical conductivity and excellent mechanical properties. In the past decades, CNT-based strain sensors with high stretchability or sensitivity have been developed. However, CNT-based strain sensors which show both high stretchability and sensitivity have not been reported. Herein, highly stretchable and sensitive strain sensors were fabricated by integrating single-walled carbon nanotubes (SWNTs) and nylon textiles via vacuum-assisted spray-layer-by-layer process. Our strain sensors had high sensitivity with 100 % tensile strain (gauge factor ~ 100). Cyclic tests confirmed that our strain sensors showed very robust and reliable characteristic. Moreover, our SWNTs-based strain sensors were easily and successfully integrated on human finger and knee to detect bending and walking motion. Our approach presented here might be route to preparing highly stretchable and sensitive strain sensors with providing new opportunity to realize practical wearable devices.

  • PDF

Addition of nano particle to increase the cavitation resistance of urethane (나노입자 첨가를 통한 우레탄수지의 캐비테이션 저항 향상)

  • Lee, Iksoo;Kim, Nackjoo;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.679-687
    • /
    • 2014
  • In this study, a new paint which is able to resist the cavitation erosion is tried to be developed by using urethane added with nano particles such as multi-wall and single-wall carbon nano tube and spherical and fiber type graphite. The new paint synthesized was characterized with physical properties and resistivity to cavitation erosion($t_{50}$). Among nano particles, fiber type graphite($t_{50}$ 292min) showed high hardness and wear resistance compared with spherical type($t_{50}$ 182min). For carbon nano tube, single-wall type($t_{50}$ 286min) was higher than multi-wall type in wear resistance. Fiber-type graphite was the best nano-particle for paint with resistivity to cavitation erosion. In the application test of paint, the manually painted sample showed surface with smooth but the surface of sample prepared with spray was not smooth. During spray, dust was fixed on the surface.

Electromechanical Properties of Conductive MWCNT Film Deposited on Flexible Substrate Affected by Concentration of Dispersing Agent (분산제 농도에 따른 MWCNT 전도성 유연필름의 전기-기계적 특성)

  • HwangBo, Yun;Kang, Yong-Pil;Kim, Jae-Hyun;Kim, Duck-Jong;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.517-521
    • /
    • 2012
  • Carbon nanotubes (CNTs) have been regarded as a promising material for the fabrication of flexible conductors such as transparent electrodes, flexible heaters, and transparent speakers. In this study, a multiwalled carbon nanotube (MWCNT) film was deposited on a polyethylene terephthalate (PET) substrate using a spraying technique. MWCNTs were dispersed in water using sodium dodecyl sulfate (SDS). To evaluate the effect of the weight ratio between SDS and MWCNTs on the electromechanical properties of the film, direct tensile tests and optical strain measurement were conducted. It was found that the CNT film hardly affected the mechanical behavior of CNT/PET composite films, while the electrical behavior of the CNT film was strongly affected by the SDS concentration in the CNT film. The electrical resistance of CNT/PET films gradually increased with the strain applied to the PET substrate, even up to a large strain that ruptured the substrate.

Opto-electrical properties of solution based carbon nanotube electrode (용액코팅된 탄소나노튜브 전극의 광전기적 성질)

  • Woo, Jong-Seok;Kim, Sun-Young;Han, Joong-Tark;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.394-394
    • /
    • 2007
  • Transparent conductive films can serve as a critical component in displays, solar cells, lasers, optical communication devices, and solid state lighting. Carbon nanotube (CNT) based transparent conductive films are fabricated on glass and polymer substrates. CNTs typically exist in form of quasi-crystalline bundles or highly entangled bundles containing tens of individual nanotubes. To achieve full potential, CNTs must be dispersed in a solvent or other organic media. CNTs are acid treated with nitric acid then the stable dispersion of CNTs in polar solvent such as alcohols, DMF, etc. is achieved by sonication. The solubility of CNTs correlates well with the area ratio of the D and G bands from Raman spectrum. Thin films are formed from well dispersed CNT solutions using spray coating method. CNT thin films exhibit a sheet resistance ($R_s$) of nearby $10^3\;{\Omega}/sq$ with a transmittance of around 80% on the visible light range, which is attributed by excellent dispersion and interaction among CNTs, solvents and polymeric binders.

  • PDF

Comparison Study of Compact Titanium Oxide (c-TiO2) Powder Electron Transport Layer Fabrication for Carbon Electrode-based Perovskite Solar Cells (탄소전극 기반 페로브스카이트 태양전지 적용을 위한 조밀 이산화티타늄 분말 전자수송층 제작 비교 연구)

  • Woo, Chae Young;Lee, Hyung Woo
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.297-302
    • /
    • 2022
  • This study compares the characteristics of a compact TiO2 (c-TiO2) powdery film, which is used as the electron transport layer (ETL) of perovskite solar cells, based on the manufacturing method. Additionally, its efficiency is measured by applying it to a carbon electrode solar cell. Spin-coating and spray methods are compared, and spray-based c-TiO2 exhibits superior optical properties. Furthermore, surface analysis by scanning electron microscopy (SEM) and atomic force microscopy (AFM) exhibits the excellent surface properties of spray-based TiO2. The photoelectric conversion efficiency (PCE) is 14.31% when applied to planar perovskite solar cells based on metal electrodes. Finally, carbon nanotube (CNT) film electrode-based solar cells exhibits a 76% PCE compared with that of metal electrode-based solar cells, providing the possibility of commercialization.

Response Characteristics of CNT Thin Film on Humidity by Silane Binders (실란 바인더에 따른 탄소나노튜브 박막의 감습 특성)

  • Kim, Seong-Jeen;Lee, Ho-Joong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.196-196
    • /
    • 2010
  • In this work, we deposited SWNTs/silane hybrid thin films by multiple spray-coating on glass substrate, and examined their electrical response for humidity. Generally silane binders which are often used in CNT solution to adhere CNTs to substrate well can be easily functionalized to each own group on the surface of CNTs after they are hardened by way of the hydrolysis reaction. We investigated how silane binders (TEOS,, MTMS and VTMS) in SWNTs hybrid thin films make effect to their electrical response on humidity. As the result, we observed that the resistance in the sample using TEOS was changed dramatically while it was almost invariant in the samples using MTMS and VTMS for increasing humidity.

  • PDF

Laser Direct Patterning of Carbon Nanotube Film

  • Yun, Ji-Uk;Jo, Seong-Hak;Jang, Won-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.203-203
    • /
    • 2012
  • The SWCNTs network are formed on various plastic substrates such as poly(ethylene terephthalate) (PET), polyimide (PI) and soda lime glass using roll-to-roll printing and spray process. Selective patterning of carbon nanotubes film on transparent substrates was performed using a femtosecond laser. This process has many advantages because it is performed without chemicals and is easily applied to large-area patterning. It could also control the transparency and conductivity of CNT film by selective removal of CNTs. Furthermore, selective cutting of carbon nanotube using a femtosecond laser does not cause any phase change in the CNTs, as usually shown in focused ion beam irradiation of the CNTs. The patterned SWCNT films on transparent substrate can be used electrode layer for touch panels of flexible or flat panel display instead indium tin oxide (ITO) film.

  • PDF

Organic Compounds Vapor Detection Properties of MWCNT/PMMA Composite Film Detector (CNT/PMMA 복합막 검출기의 유기화합물 증기의 검출 특성)

  • Lim, Young Taek;Shin, Paik-Kyun;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.727-730
    • /
    • 2015
  • In this paper, we fabricated organic compounds detector using the MWCNT/PMMA (multi-walled carbon nanotube / polymethylmethacrylate) composite film. We used polymer film as a matrix material for the device framework, and introduced CNTs for reacting with the organic compounds resulting in changing electrical conductivity. Spray coating method was used to form the MWCNT/PMMA composite film detector, and pattern formation of the detector was done by shadow mask during the spray coating process. We investigated changes of electrical conductivity of the detector before and after the organic compounds exposure. Electrical conductivity of the detector tended to decrease after the exposure with various organic compounds such as acetone, tetrahydrofuran (THF), toluene, and dimethylformamide (DMF). Finally we conclude that organic compounds detection by the MWCNT/PMMA composite film detector was possible, and expect the feasibility of commercial MWCNT/PMMA composite film detector for various organic compounds.

Improvement Electrical Property of AgNWs by Plasma Treatment (플라즈마처리를 이용한 은나노와이어 투명전극의 전기적 특성 향상에 관한 연구)

  • An, Won-Min;Jeong, Seong-Hun;Kim, Do-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.51-52
    • /
    • 2015
  • Organic light emitting diode (OLED) 나 organic photovoltaic device (OPV)와 같은 유기소자에 전극으로 쓰이고 있는 indium tin oxide (ITO)는 유연한 디바이스에 적용하기에는 유연성이 떨어진다는 문제가 있다. 이를 해결하기 위해서 ITO를 대체할 수 있는 CNT, Graphene, AgNWs, 전도성 고분자 등의 투명전극에 관한 연구가 활발히 진행되고 있다. 그러나 CNT, Grapene, 전도성 고분자는 여전히 전기적 특성이 좋지 못하기 때문에 차세대 투명전극으로 사용되기는 어려움이 있다. 반면에 AgNWs는 용액공정으로 제조 단가가 비교적 저렴하며, 높은 전기전도도 특성과 우수한 유연성을 가지는 투명 전극이기 때문에 많은 주목을 받고 있다. 그러나 NW-NW간의 접촉저항이 높아 전도성이 저하된다는 문제점과 Environmental stability가 좋지 못하다는 단점이 여전히 존재한다. 본 연구에서는 AgNW 전극 위에 플라즈마처리를 진행하여 AgNW의 전도성과 Stability를 향상시키고자하였다. 플렉서블한 PET기판위에 AgNW 전극을 Spray Coating하여 균일하게 전극을 형성하였고, 플라즈마 처리를 통해서 기판의 변형없이 AgNW의 저항을 45%이상 향상시켰으며, Stability 또한 아무것도 처리하지 않은 AgNW에 대비하여 2배 이상 향상된 것을 확인하였다.

  • PDF

Spherical Silicon/CNT/Carbon Composite Wrapped with Graphene as an Anode Material for Lithium-Ion Batteries

  • Shin, Min-Seon;Choi, Cheon-Kyu;Park, Min-Sik;Lee, Sung-Man
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.159-166
    • /
    • 2022
  • The assembly of the micron-sized Si/CNT/carbon composite wrapped with graphene (SCG composite) is designed and synthesized via a spray drying process. The spherical SCG composite exhibits a high discharge capacity of 1789 mAh g-1 with an initial coulombic efficiency of 84 %. Moreover, the porous architecture of SCG composite is beneficial for enhancing cycling stability and rate capability. In practice, a blended electrode consisting of spherical SCG composite and natural graphite with a reversible capacity of ~500 mAh g-1, shows a stable cycle performance with high cycling efficiencies (> 99.5%) during 100 cycles. These superior electrochemical performance are mainly attributed to the robust design and structural stability of the SCG composite during charge and discharge process. It appears that despite the fracture of micro-sized Si particles during repeated cycling, the electrical contact of Si particles can be maintained within the SCG composite by suppressing the direct contact of Si particles with electrolytes.