• Title/Summary/Keyword: CNT materials

Search Result 527, Processing Time 0.032 seconds

Effects of the Surface Modification on the Dispersion of Carbon Nanotube (탄소나노튜브의 분산성에 미치는 표면개질의 영향)

  • Kim, Sung-Su;Kim, Hyung-Joong;Yoo, Youngjae;Lee, Sung-Goo;Choi, Kil-Yeong;Lee, Jae Heung
    • Journal of Adhesion and Interface
    • /
    • v.4 no.4
    • /
    • pp.22-27
    • /
    • 2003
  • Chemical modification of carbon nanotube (CNT) was carried out using $HNO_3$ and $H_2SO_4$ and characterized by analyzing the CNT before and after the modification using FT-IR and titration. Aggregation behaviors were investigated using a real-time video microscope after the chemically modified CNT(mCNT) had been dispersed in organic solvents such as toluene, dimethylformamide (DMF) and N-methylpyrrolidone (NMP) by ultrasonication. The mCNT showed better dispersion in polar sovents of DMF and NMP than the rCNT. CNT/ poly(methylmethacrylate) (PMMA) films were prepared from solution DMF/PMMA solutions. The films containing mCNT also revealed the improved dispersion.

  • PDF

NO Gas Sensing Characteristics of Single-Walled Carbon Nanotubes and Heating Effect (단층 탄소나노튜브의 일산화질소 가스에 대한 감응특성과 열처리 효과)

  • Kim, Min-Ju;Yun, Kwang-Hyun;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.292-297
    • /
    • 2004
  • Carbon nanotubes (CNT) were synthesized by arc-discharge method. To fabricate CNT sensor, CNT powder was dispersed in ${\alpha}$-Terpinol($C_{10}H_{17}OH$) solution. The CNT tilms were fabricated by screen printing method on the interdigitated Pt/Pd alloy electrode. The microstructure of CNT film was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In order to investigate the gas sensing characteristics of the film, the CNT film was experimented to measure NO response and recovery time. The CNT sensor with a heater was compared to that without a heater. And this sensor shows better reproductibility and faster recovery time than another CNT sensors. We suggest the possibility to utilize a CNT as new sensing materials for environmental monitoring.

A Study of Damage Sensing and Repairing Effect of CNT Nanocomposites (손상감지용 CNT 나노복합재료의 손상 감지능 및 보강효과 연구)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Choi, Jin-Young;Shin, Pyeong-Su;Park, Joung-Man
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.219-224
    • /
    • 2014
  • Nancomposites manufacture has been developed rapidly, because of reinforcing effects of CNT in terms of mechanical, electrical and thermal properties. In this study, 10 wt% CNT paste was fabricated with good dispersion state and easy processability. Damage sensing and reinforcing effect of CNT paste were investigated in nanocomposites. 10 wt% CNT paste exhibited better tensile and flexural properties than those of general 1 wt% CNT nanocomposites. To observe the healing effect of CNT paste, a crack was made artificially with 30wt% CF30wt%/PP composites, and the CNT paste was filled inside the crack. The damage sensing of CNT paste in CF30wt%/PP composites was investigated by electrical resistance measurement and mechanical tests. CNT paste exhibited good reinforcing effect in mechanical properties of CF30wt%/PP composites, and this reinforcing effect was getting better with larger cracks. The reason was because CNT paste had good interfacial adhesion with CF30wt%/PP composites to resist crack propagation. In electrical resistance measurement, there was a jump in electrical resistance signal at the adhesion interface. The jumping signal could be used to predict fracture of CF/PP composites. CNT nanocomposites for damage sensing had crack reducing effect and damage detection using electrical resistance method.

Interfacial Evaluation and Microfailure Sensing of Nanocomposites by Electrical Resistance Measurements and Wettability (전기저항측정법 및 젖음성을 이용한 나노복합재료의 미세파손 감지능 및 계면물성 평가)

  • Park, Joung-Man;Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.138-144
    • /
    • 2017
  • Damage sensing of polymer composite films consisting of poly(dicyclopentadiene) p-DCPD and carbon nanotube (CNT) was studied experimentally. Only up to 1st ring-opening polymerization occurred with the addition of CNT, which made the modified film electrically conductive, while interfering with polymerization. The interfacial adhesion of composite films with varying CNT concentration was evaluated by measuring the wettability using the static contact angle method. 0.5 wt% CNT/p-DCPD was determined to be the optimal condition via electrical dispersion method and tensile test. Dynamic fatigue test was conducted to evaluate the durability of the films by measuring the change in electrical resistance. For the initial three cycles, the change in electrical resistance pattern was similar to the tensile stress-strain curve. The CNT/p-DCPD film was attached to an epoxy matrix to demonstrate its utilization as a sensor for fracture behavior. At the onset of epoxy fracture, electrical resistance showed a drastic increase, which indicated adhesive fracture between sensor and matrix. It leads to prediction of crack and fracture of matrix.

Synthesis of CNT Arrays with Controlling Morphology for High Spinnablility (방적성 향상을 위한 탄소나노튜브 어레이의 형상제어 및 특성평가)

  • Jeong, Seung Pil;Ryu, Seongwoo;Moon, Sook Young
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.265-269
    • /
    • 2019
  • The direct spinning of carbon nanotube (CNT) fibers is a promising method in the high performance composite materials. However, most of the reported CNT arrays do not have spinning properties because of their limited synthesis conditions. In this study, we investigate the properties of spinnable CNT arrays, which is closely related to the morphology of CNT array. The array morphology controlled by controlling the conditions of catalyst, carbon source, etc. By additional carbon source of ethylene and changing the composition of the catalyst, the waviness of the CNT array can be remarkably reduced, which leads to improve of the spinning properties. The synthesized CNT arrays were well aligned along c-axis and the synthesis conditions of the spinning array could be derived.

The Effect of CNT Electrode on the Charging and Discharging Characteristics of Supercapacitor (CNT를 이용한 Supercapacitor의 충.방전 특성)

  • Hur, Geun;Myoung, Seong-Jae;Lee, Yong-Hyun;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik;Shim, Kwang-Bo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.275-275
    • /
    • 2007
  • Two sorts of electrode composed of Sulpur/CNT/PVDF and Silver/CNT/PVDF were prepared by in situ chemical method and their electrochemical performance were evaluated by using cyclic voltammetry, impedance measurement and constant-current charge/discharge cycling technique. Also, composite electrodes were characterized by FE-SEM and BET. Raw materials such as CNT/Silver and CNT/Sulfur were mixed in ethanol, dried. These mixed materials were heated at 900 and $320^{\circ}C$ for 2hr, respectively in order to enhance contact among CNT electrodes. Electric double layer capacitor cells were fabricated using these mixed powder with polymer of PVDF. For the charging and discharging characteristics measured at scan rate of 1 mA/s, Supercapacitor of Sulphur-CNT-PVDF electrode showed a better performance than that of Ag-CNT-PVDF, which seems to be related with lower contact resistance of Sulphur-CNT-PVDF electrode.

  • PDF

Effect of CNT Particle Dispersion in CNT Paste on Field Emission Characteristics in Carbon Nanotube Cathode (탄소나노튜브의 분산이 탄소나노튜브 캐소드의 전계방출 특성에 미치는 영향)

  • Ahn B. G.;Seung M. S.;Shin H. Y.;Kim D. H.;Kim T. S.;Cho Y. R.
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.807-812
    • /
    • 2004
  • The uniformity of emission mage and field emission properties of carbon nanotube(CNT) cathodes dependence on CNT particle dispersion were investigated for field emission displays. We used multi-walled carbon nanotubes (MWNTs) synthesized by CVD method as the field emitter materials. CNT dispersion in CNT ink was carried out by ultrasonication and shaking methods. According to CNT dispersion conditions, the uniformity of emission image and field emission properties of CNT cathodes were greatly affected. The smaller particles of filler materials and CNT powders provide the better properties of the CNT cathodes.

Fabrication of carbon nanotube emitters by filtration through a metal mesh

  • Choi, Ju-Sung;Lee, Han-Sung;Gwak, Jeung-Chun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.150-150
    • /
    • 2010
  • Carbon nanotubes have drawn attention as one of the most promising emitter materials ever known not only due to their nanometer-scale radius of curvature at tip and extremely high aspect ratios but also due to their strong mechanical strength, excellent thermal conductivity, good chemical stability, etc. Some applications of CNTs as emitters, such as X-ray tubes and microwave amplifiers, require high current emission over a small emitter area. The field emission for high current density often damages CNT emitters by Joule heating, field evaporation, or electrostatic interaction. In order to endure the high current density emission, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects: highly crystalline CNT materials, low gas emission during electron emission in vacuum, optimal emitter distribution density, optimal aspect ratio of emitters, uniform emitter height, strong emitter adhesion onto a substrate, etc. We attempted a novel approach to fabricate CNT emitters to meet some of requirements described above, including highly crystalline CNT materials, low gas emission, and strong emitter adhesion. In this study, CNT emitters were fabricated by filtrating an aqueous suspension of highly crystalline thin multiwalled CNTs (Hanwha Nanotech Inc.) through a metal mesh. The metal mesh served as a support and fixture frame of CNT emitters. When 5 ml of the CNT suspension was engaged in filtration through a 400 mesh, the CNT layers were formed to be as thick as the mesh at the mesh openings. The CNT emitter sample of $1{\times}1\;cm^2$ in size was characteristic of the turn-on electrical field of 2.7 V/${\mu}m$ and the current density of 14.5 mA at 5.8 V/${\mu}m$ without noticeable deterioration of emitters. This study seems to provide a novel fabrication route to simply produce small-size CNT emitters for high current emission with reliability.

  • PDF

A Study on the Next-generation Composite Based on the Highly Porous Carbon Nanotube Fibers (다공성 탄소나노튜브 섬유를 이용한 차세대 복합소재 연구)

  • Lee, Kyunbae;Jung, Yeonsu;Lee, Sang Bok;Kim, Taehoon
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.139-146
    • /
    • 2022
  • In this study, we study fabrication methods suitable for CNT fibers-based composite. We try to fabricate a composite material using a small amount of CNT fiber preparation of woven fabrics or stitched unidirectional fabrics consisting of CNT fiber is not achievable currently. The composite materials on the basis of CNT fibers have been mainly manufactured filament winding method due to productivity issues and difficulties in composite processes. We develop a new method to prepare CNT fibers-based composite using resin infiltrated CNT fibers-based films. Because CNT fibers have numerous nanopores inside, unnecessary resin can remain after curing and decrease the mechanical properties of the composites. To remove the excess resin, pressure should be applied during the process, but the pressure applied through VaRTM was not enough to remove the excess resin. To obtain the composite with high ratio of CNT fibers, higher pressure using hot press machine and foams next to the resin-infiltrated CNT fibers are necessary. We can obtain the composite having a mass ratio of 58.5 wt% based on the new suggested method and diluted epoxy. The specific strength of the composite reach 0.525 N/tex. This study presents a new process method that can be applied to the manufacturing of CNT fiber composite materials in the future.

Electro-chemical Preparation of TiO2/CNT Electrodes with TNB Electrolyte and Their Photoelectrocatalytic Effect

  • Zhang, Feng-Jun;Chen, Ming-Liang;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.554-560
    • /
    • 2009
  • We investigate a method for the electrochemical preparation of titanium dioxide/carbon nanotube ($TiO_2$/CNT) composites involving the electroplating of Ti in a titanium n-butoxide (TNB) electrolyte into a CNT matrix. The Brunauer-Emmett-Teller (BET) surface areas of $TiO_2$/CNT composites decrease as the electrochemical operating time increases. Changes in XRD patterns show a typical anatase type on the $TiO_2$/CNT composite prepared with a CNT matrix by the electroplating method in a TNB solution. In SEM micrographs, the titanium complex particles are uniformly distributed on the CNT surface. The results of chemical elemental analysis for the $TiO_2$/CNT composites show that most of the spectra for these samples produce stronger peaks for carbon and Ti metal than for any other element. Finally, the prominent photoelectrocatalytic activities of the $TiO_2$/CNT composites can be attributed to the combined effects of photodegradation of $TiO_2$, electron assistance of CNT, and the application of a sufficient voltage.