• 제목/요약/키워드: CNT/Cu nanocomposite

검색결과 8건 처리시간 0.026초

Fabrication Process and Properties of Carbon Nanotube/Cu Nanocomposites

  • Cha, Seung-I.;Kim, Kyung-T.;Mo, Chan-B.;Hong, Soon-H.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.366-367
    • /
    • 2006
  • Carbon nanotubes (CNTs) have attracted remarkable attention as reinforcement for composites owing to their outstanding mechanical properties. The CNT/Cu nanocomposite is fabricated by a novel fabrication process named molecular level process. The novel process for fabricating CNT/Cu composite powders involves suspending CNTs in a solvent by surface functionalization, mixing Cu ions with CNT suspension, drying, calcination and reduction. The molecular level process produces CNT/Cu composite powders whereby the CNTs are homogeneously implanted within Cu powders. The mechanical properties of CNT/Cu nanocomposite, consolidated by spark plasma sintering of CNT/Cu composite powders, shows about 3 times higher strength and 2 times higher Young's modulus than those of Cu matrix.

  • PDF

CNT/Cu 나노복합체의 제조 및 전기적 특성평가 (Electrical Characteristics and Fabrication of CNT/Cu Nanocomposite)

  • 흥윤정;김혜진;이규만;김인우
    • 반도체디스플레이기술학회지
    • /
    • 제6권4호
    • /
    • pp.59-63
    • /
    • 2007
  • The CNTs are the most extensively studied material which are characterized by the complete property of matter, structure, and the large thermal conductivity (thermal conductivity of CNTs ~>2000W/mK vs. thermal conductivity of Aluminum ~> 204W/mK). Thus, they are successfully applied to the various fields. However, due to the strong agglomeration caused by the van der waal's force, their applications are limited. In the present study, a new method for CNTs dispersion was developed by using the mechanical dispersion, acid treatment, and then Cu was coated. This process produces CNTs/Cu nanocomposite powders, whereby the CNTs are homogeneously located within the Cu powders. The electrical properties of the CNTs/Cu nanocomposite were investigated.

  • PDF

분자수준 혼합공정을 이용한 탄소나노튜브/Cu 나노복합재료의 제조 및 특성평가 (Fabrication and Characterization of Carbon Nanotube/Cu Nanocomposites by Molecular Level Mixing Process)

  • 김경태;차승일;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.261-264
    • /
    • 2005
  • Since the first discovery of carbon nanotube (CNT) in 1991, a window to new technological areas has been opened. One of the emerging applications of CNTs is the reinforcement of composite materials to overcome the performance limits of conventional materials. However, because of the difficulties in distributing CNTs homogeneously in metal or ceramic matrix by means of traditional composite processes, it has been doubted whether CNTs can really reinforce metals or ceramics. In this study, CNT reinforced Cu matrix nanocomposite is fabricated by a novel fabrication process named molecular level mixing process. This process produces CNT/Cu composite powders whereby the CNTs are homogeneously implanted within Cu powders. The CNT/Cu nanocomposite, consolidated by spark plasma sintering of CNT/Cu composite powders, shows to be 3 times higher strength and 2 times higher Young’s modulus than Cu matrix. This extra-ordinary strengthening effect of carbon nanotubes in metal is higher than that of any other reinforcement ever used for metal matrix composites.

  • PDF

Equal Channel Angular Pressing 공정을 이용한 CNT/Cu 복합분말의 고형화 (The consolidation of CNT/Cu mixture powder using equal channel angular pressing)

  • 윤승채;팜쾅;김형섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.119-122
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of 1 vol.% carbon nanotube (CNT)-metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT-Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature. It was found by mechanical testing of the consolidated 1 vol.% CNT-Cu that high mechanical strength could be achieved effectively as a result of the Cu matrix strengthening and improved particle bonding during ECAP. The ECAP processing of powders is a viable method to achieve fully density CNT-Cu nanocomposites.

  • PDF

Carbon Nanotube/Cu 나노복합체의 열적특성 (Thermal Property of CNT/Cu Nanocomposite)

  • 홍윤정;김혜진;정충헌;이규만
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.89-90
    • /
    • 2006
  • The CNTs are of great interest because of their unique complete properties of matter, especially, the large thermal conductivity (Thermal conductivity of CNTs ~ >2000W /mK vs. Thermal conductivity of Aluminum ~ >204W/mK). However, owing to the strong agglomeration cause by the vander wall's force, the CNTs are limited to applicate. In this study. we suggest a new method for CNTs dispersion. which are developed by the mechanical and chemical method. and then Cu was coated. This new process produces CNTs/Cu nanocomposite powders. The CNTs are homogeneously located within the Cu powders by chemical reaction. And the thermal properties of the CNTs/Cu nanocomposite were investigated.

  • PDF

CNT/Cu 혼합분말의 ECAP 공정 시 치밀화 및 소성변형 거동 해석 (Analyses of Densification and Plastic Deformation during Equal Channel Angular Pressing of CNT/Cu Powder Mixtures)

  • 팜쾅;윤승채;정영기;김형섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.123-126
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of carbon nanotube (CNT)/metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT/Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature.

  • PDF

ZnS:Cu-PDMS 기반 기계 발광 유연 나노 복합체의 CNT 혼입에 따른 전기 및 광학적 특성 향상에 대한 연구 (Enhancing Electrical and Optical Properties in Mechanoluminescent Flexible Nanocomposite Based on ZnS:Cu-PDMS by Mixing CNTs)

  • 김태민;김현우;윤종혁;김미희;전다빈;최대철;이성남
    • 한국전기전자재료학회논문지
    • /
    • 제36권5호
    • /
    • pp.531-535
    • /
    • 2023
  • Mechanoluminescence (ML) is a phenomenon where the application of mechanical force to ML materials generates an electric field and produces light, holding significant promise as an eco-friendly technology. However, challenges in commercializing ML technology has arisen due to its low brightness and short luminous lifetime. To address this, in this work, we enhance ML efficiency by mixing carbon nanotubes (CNTs) into a ZnS: Cu embedded in a polydimethylsiloxane composite ML device. The inclusion of CNTs boosts ML intensity by 98% compared to devices without CNTs, as the increasing CNT fraction elevates conductivity, thereby amplifying ML intensity. However, this increase in CNT fraction also leads to enhanced light absorption within the device. Consequently, we observe a trend where ML intensity rises initially but declines beyond a CNT fraction of 0.0015 wt%. Based on these findings, we anticipate that our research will make valuable contributions to the advancement of electrical powerless mechanoluminescent technology.

Carbon Nanotube Reinforced Metal Matrix Nanocomposites via Equal Channel Angular Pressing

  • Quang, Pham;Jeong, Young-Gi;Yoon, Seung-Chae;Hong, Sun-Ig;Hong, Soon-Hyung;Kim, Hyoung-Seop
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.980-981
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of Carbon nanotube (CNT)/metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT/Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature.

  • PDF