• Title/Summary/Keyword: CNN model

Search Result 1,011, Processing Time 0.026 seconds

Host-Based Intrusion Detection Model Using Few-Shot Learning (Few-Shot Learning을 사용한 호스트 기반 침입 탐지 모델)

  • Park, DaeKyeong;Shin, DongIl;Shin, DongKyoo;Kim, Sangsoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.7
    • /
    • pp.271-278
    • /
    • 2021
  • As the current cyber attacks become more intelligent, the existing Intrusion Detection System is difficult for detecting intelligent attacks that deviate from the existing stored patterns. In an attempt to solve this, a model of a deep learning-based intrusion detection system that analyzes the pattern of intelligent attacks through data learning has emerged. Intrusion detection systems are divided into host-based and network-based depending on the installation location. Unlike network-based intrusion detection systems, host-based intrusion detection systems have the disadvantage of having to observe the inside and outside of the system as a whole. However, it has the advantage of being able to detect intrusions that cannot be detected by a network-based intrusion detection system. Therefore, in this study, we conducted a study on a host-based intrusion detection system. In order to evaluate and improve the performance of the host-based intrusion detection system model, we used the host-based Leipzig Intrusion Detection-Data Set (LID-DS) published in 2018. In the performance evaluation of the model using that data set, in order to confirm the similarity of each data and reconstructed to identify whether it is normal data or abnormal data, 1D vector data is converted to 3D image data. Also, the deep learning model has the drawback of having to re-learn every time a new cyber attack method is seen. In other words, it is not efficient because it takes a long time to learn a large amount of data. To solve this problem, this paper proposes the Siamese Convolutional Neural Network (Siamese-CNN) to use the Few-Shot Learning method that shows excellent performance by learning the little amount of data. Siamese-CNN determines whether the attacks are of the same type by the similarity score of each sample of cyber attacks converted into images. The accuracy was calculated using Few-Shot Learning technique, and the performance of Vanilla Convolutional Neural Network (Vanilla-CNN) and Siamese-CNN was compared to confirm the performance of Siamese-CNN. As a result of measuring Accuracy, Precision, Recall and F1-Score index, it was confirmed that the recall of the Siamese-CNN model proposed in this study was increased by about 6% from the Vanilla-CNN model.

Stacked Sparse Autoencoder-DeepCNN Model Trained on CICIDS2017 Dataset for Network Intrusion Detection (네트워크 침입 탐지를 위해 CICIDS2017 데이터셋으로 학습한 Stacked Sparse Autoencoder-DeepCNN 모델)

  • Lee, Jong-Hwa;Kim, Jong-Wouk;Choi, Mi-Jung
    • KNOM Review
    • /
    • v.24 no.2
    • /
    • pp.24-34
    • /
    • 2021
  • Service providers using edge computing provide a high level of service. As a result, devices store important information in inner storage and have become a target of the latest cyberattacks, which are more difficult to detect. Although experts use a security system such as intrusion detection systems, the existing intrusion systems have low detection accuracy. Therefore, in this paper, we proposed a machine learning model for more accurate intrusion detections of devices in edge computing. The proposed model is a hybrid model that combines a stacked sparse autoencoder (SSAE) and a convolutional neural network (CNN) to extract important feature vectors from the input data using sparsity constraints. To find the optimal model, we compared and analyzed the performance as adjusting the sparsity coefficient of SSAE. As a result, the model showed the highest accuracy as a 96.9% using the sparsity constraints. Therefore, the model showed the highest performance when model trains only important features.

Study on the Functional Architecture and Improvement Accuracy for Auto Target Classification on the SAR Image by using CNN Ensemble Model based on the Radar System for the Fighter (전투기용 레이다 기반 SAR 영상 자동표적분류 기능 구조 및 CNN 앙상블 모델을 이용한 표적분류 정확도 향상 방안 연구)

  • Lim, Dong Ju;Song, Se Ri;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.1
    • /
    • pp.51-57
    • /
    • 2020
  • The fighter pilot uses radar mounted on the fighter to obtain high-resolution SAR (Synthetic Aperture Radar) images for a specific area of distance, and then the pilot visually classifies targets within the image. However, the target configuration captured in the SAR image is relatively small in size, and distortion of that type occurs depending on the depression angle, making it difficult for pilot to classify the type of target. Also, being present with various types of clutters, there should be errors in target classification and pilots should be even worse if tasks such as navigation and situational awareness are carried out simultaneously. In this paper, the concept of operation and functional structure of radar system for fighter jets were presented to transfer the SAR image target classification task of fighter pilots to radar system, and the method of target classification with high accuracy was studied using the CNN ensemble model to archive higher classification accuracy than single CNN model.

The Classification Scheme of ADHD for children based on the CNN Model (CNN 모델 기반의 소아 ADHD 분류 기법)

  • Kim, Do-Hyun;Park, Seung-Min;Kim, Dong-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.809-814
    • /
    • 2022
  • ADHD is a disorder showing inattentiveness and hyperactivity. Since symptoms diagnosed in childhood continue to the adulthood, it is important to diagnose ADHD and start treatments in early stages. However, it has the problems to acquire enough and accurate data for the diagnosis because the mental state of children is immature using the self-diagnosis method or the computerized test. In this paper, we present the classification method based on the CNN model and execute experiment using the EEG data to improve the objectiveness and the accuracy of ADHD diagnosis. For the experiment, we build the 3D convolutional networks model and exploit the 5-folds cross validation method. The result shows the 97% accuracy on average.

A Study of Weighing System to Apply into Hydraulic Excavator with CNN (CNN기반 굴삭기용 부하 측정 시스템 구현을 위한 연구)

  • Hwang Hun Jeong;Young Il Shin;Jin Ho Lee;Ki Yong Cho
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.133-139
    • /
    • 2023
  • A weighing system calculates the bucket's excavation amount of an excavator. Usually, the excavation amount is computed by the excavator's motion equations with sensing data. But these motion equations have computing errors that are induced by assumptions to the linear systems and identification of the equation's parameters. To reduce computing errors, some commercial weighing system incorporates particular motion into the excavation process. This study introduces a linear regression model on an artificial neural network that has fewer predicted errors and doesn't need a particular pose during an excavation. Time serial data were gathered from a 30tons excavator's loading test. Then these data were preprocessed to be adjusted by MPL (Multi Layer Perceptron) or CNN (Convolutional Neural Network) based linear regression models. Each model was trained by changing hyperparameter such as layer or node numbers, drop-out rate, and kernel size. Finally ID-CNN-based linear regression model was selected.

CNN-based Fall Detection Model for Humanoid Robots (CNN 기반의 인간형 로봇의 낙상 판별 모델)

  • Shin-Woo Park;Hyun-Min Joe
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.18-23
    • /
    • 2024
  • Humanoid robots, designed to interact in human environments, require stable mobility to ensure safety. When a humanoid robot falls, it causes damage, breakdown, and potential harm to the robot. Therefore, fall detection is critical to preventing the robot from falling. Prevention of falling of a humanoid robot requires an operator controlling a crane. For efficient and safe walking control experiments, a system that can replace a crane operator is needed. To replace such a crane operator, it is essential to detect the falling conditions of humanoid robots. In this study, we propose falling detection methods using Convolution Neural Network (CNN) model. The image data of a humanoid robot are collected from various angles and environments. A large amount of data is collected by dividing video data into frames per second, and data augmentation techniques are used. The effectiveness of the proposed CNN model is verified by the experiments with the humanoid robot MAX-E1.

Indirect Inspection Signal Diagnosis of Buried Pipe Coating Flaws Using Deep Learning Algorithm (딥러닝 알고리즘을 이용한 매설 배관 피복 결함의 간접 검사 신호 진단에 관한 연구)

  • Sang Jin Cho;Young-Jin Oh;Soo Young Shin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.93-101
    • /
    • 2023
  • In this study, a deep learning algorithm was used to diagnose electric potential signals obtained through CIPS and DCVG, used indirect inspection methods to confirm the soundness of buried pipes. The deep learning algorithm consisted of CNN(Convolutional Neural Network) model for diagnosing the electric potential signal and Grad CAM(Gradient-weighted Class Activation Mapping) for showing the flaw prediction point. The CNN model for diagnosing electric potential signals classifies input data as normal/abnormal according to the presence or absence of flaw in the buried pipe, and for abnormal data, Grad CAM generates a heat map that visualizes the flaw prediction part of the buried pipe. The CIPS/DCVG signal and piping layout obtained from the 3D finite element model were used as input data for learning the CNN. The trained CNN classified the normal/abnormal data with 93% accuracy, and the Grad-CAM predicted flaws point with an average error of 2m. As a result, it confirmed that the electric potential signal of buried pipe can be diagnosed using a CNN-based deep learning algorithm.

CNN-based Image Rotation Correction Algorithm to Improve Image Recognition Rate (이미지 인식률 개선을 위한 CNN 기반 이미지 회전 보정 알고리즘)

  • Lee, Donggu;Sun, Young-Ghyu;Kim, Soo-Hyun;Sim, Issac;Lee, Kye-San;Song, Myoung-Nam;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.225-229
    • /
    • 2020
  • Recently, convolutional neural network (CNN) have been showed outstanding performance in the field of image recognition, image processing and computer vision, etc. In this paper, we propose a CNN-based image rotation correction algorithm as a solution to image rotation problem, which is one of the factors that reduce the recognition rate in image recognition system using CNN. In this paper, we trained our deep learning model with Leeds Sports Pose dataset to extract the information of the rotated angle, which is randomly set in specific range. The trained model is evaluated with mean absolute error (MAE) value over 100 test data images, and it is obtained 4.5951.

Development of a Flooding Detection Learning Model Using CNN Technology (CNN 기술을 적용한 침수탐지 학습모델 개발)

  • Dong Jun Kim;YU Jin Choi;Kyung Min Park;Sang Jun Park;Jae-Moon Lee;Kitae Hwang;Inhwan Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.1-7
    • /
    • 2023
  • This paper developed a training model to classify normal roads and flooded roads using artificial intelligence technology. We expanded the diversity of learning data using various data augmentation techniques and implemented a model that shows good performance in various environments. Transfer learning was performed using the CNN-based Resnet152v2 model as a pre-learning model. During the model learning process, the performance of the final model was improved through various parameter tuning and optimization processes. Learning was implemented in Python using Google Colab NVIDIA Tesla T4 GPU, and the test results showed that flooding situations were detected with very high accuracy in the test dataset.

Performance Comparison of Commercial and Customized CNN for Detection in Nodular Lung Cancer (결절성 폐암 검출을 위한 상용 및 맞춤형 CNN의 성능 비교)

  • Park, Sung-Wook;Kim, Seunghyun;Lim, Su-Chang;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.6
    • /
    • pp.729-737
    • /
    • 2020
  • Screening with low-dose spiral computed tomography (LDCT) has been shown to reduce lung cancer mortality by about 20% when compared to standard chest radiography. One of the problems arising from screening programs is that large amounts of CT image data must be interpreted by radiologists. To solve this problem, automated detection of pulmonary nodules is necessary; however, this is a challenging task because of the high number of false positive results. Here we demonstrate detection of pulmonary nodules using six off-the-shelf convolutional neural network (CNN) models after modification of the input/output layers and end-to-end training based on publicly databases for comparative evaluation. We used the well-known CNN models, LeNet-5, VGG-16, GoogLeNet Inception V3, ResNet-152, DensNet-201, and NASNet. Most of the CNN models provided superior results to those of obtained using customized CNN models. It is more desirable to modify the proven off-the-shelf network model than to customize the network model to detect the pulmonary nodules.