• Title/Summary/Keyword: CNN model

Search Result 1,011, Processing Time 0.031 seconds

Runoff Prediction from Machine Learning Models Coupled with Empirical Mode Decomposition: A case Study of the Grand River Basin in Canada

  • Parisouj, Peiman;Jun, Changhyun;Nezhad, Somayeh Moghimi;Narimani, Roya
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.136-136
    • /
    • 2022
  • This study investigates the possibility of coupling empirical mode decomposition (EMD) for runoff prediction from machine learning (ML) models. Here, support vector regression (SVR) and convolutional neural network (CNN) were considered for ML algorithms. Precipitation (P), minimum temperature (Tmin), maximum temperature (Tmax) and their intrinsic mode functions (IMF) values were used for input variables at a monthly scale from Jan. 1973 to Dec. 2020 in the Grand river basin, Canada. The support vector machine-recursive feature elimination (SVM-RFE) technique was applied for finding the best combination of predictors among input variables. The results show that the proposed method outperformed the individual performance of SVR and CNN during the training and testing periods in the study area. According to the correlation coefficient (R), the EMD-SVR model outperformed the EMD-CNN model in both training and testing even though the CNN indicated a better performance than the SVR before using IMF values. The EMD-SVR model showed higher improvement in R value (38.7%) than that from the EMD-CNN model (7.1%). It should be noted that the coupled models of EMD-SVR and EMD-CNN represented much higher accuracy in runoff prediction with respect to the considered evaluation indicators, including root mean square error (RMSE) and R values.

  • PDF

Classification Algorithm for Liver Lesions of Ultrasound Images using Ensemble Deep Learning (앙상블 딥러닝을 이용한 초음파 영상의 간병변증 분류 알고리즘)

  • Cho, Young-Bok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.101-106
    • /
    • 2020
  • In the current medical field, ultrasound diagnosis can be said to be the same as a stethoscope in the past. However, due to the nature of ultrasound, it has the disadvantage that the prediction of results is uncertain depending on the skill level of the examiner. Therefore, this paper aims to improve the accuracy of liver lesion detection during ultrasound examination based on deep learning technology to solve this problem. In the proposed paper, we compared the accuracy of lesion classification using a CNN model and an ensemble model. As a result of the experiment, it was confirmed that the classification accuracy in the CNN model averaged 82.33% and the ensemble model averaged 89.9%, about 7% higher. Also, it was confirmed that the ensemble model was 0.97 in the average ROC curve, which is about 0.4 higher than the CNN model.

Deep Learning Music genre automatic classification voting system using Softmax (소프트맥스를 이용한 딥러닝 음악장르 자동구분 투표 시스템)

  • Bae, June;Kim, Jangyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.27-32
    • /
    • 2019
  • Research that implements the classification process through Deep Learning algorithm, one of the outstanding human abilities, includes a unimodal model, a multi-modal model, and a multi-modal method using music videos. In this study, the results were better by suggesting a system to analyze each song's spectrum into short samples and vote for the results. Among Deep Learning algorithms, CNN showed superior performance in the category of music genre compared to RNN, and improved performance when CNN and RNN were applied together. The system of voting for each CNN result by Deep Learning a short sample of music showed better results than the previous model and the model with Softmax layer added to the model performed best. The need for the explosive growth of digital media and the automatic classification of music genres in numerous streaming services is increasing. Future research will need to reduce the proportion of undifferentiated songs and develop algorithms for the last category classification of undivided songs.

CNN-ViT Hybrid Aesthetic Evaluation Model Based on Quantification of Cognitive Features in Images (이미지의 인지적 특징 정량화를 통한 CNN-ViT 하이브리드 미학 평가 모델)

  • Soo-Eun Kim;Joon-Shik Lim
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.352-359
    • /
    • 2024
  • This paper proposes a CNN-ViT hybrid model that automatically evaluates the aesthetic quality of images by combining local and global features. In this approach, CNN is used to extract local features such as color and object placement, while ViT is employed to analyze the aesthetic value of the image by reflecting global features. Color composition is derived by extracting the primary colors from the input image, creating a color palette, and then passing it through the CNN. The Rule of Thirds is quantified by calculating how closely objects in the image are positioned near the thirds intersection points. These values provide the model with critical information about the color balance and spatial harmony of the image. The model then analyzes the relationship between these factors to predict scores that align closely with human judgment. Experimental results on the AADB image database show that the proposed model achieved a Spearman's Rank Correlation Coefficient (SRCC) of 0.716, indicating more consistent rank predictions, and a Pearson Correlation Coefficient (LCC) of 0.72, which is 2~4% higher than existing models.

Analyze weeds classification with visual explanation based on Convolutional Neural Networks

  • Vo, Hoang-Trong;Yu, Gwang-Hyun;Nguyen, Huy-Toan;Lee, Ju-Hwan;Dang, Thanh-Vu;Kim, Jin-Young
    • Smart Media Journal
    • /
    • v.8 no.3
    • /
    • pp.31-40
    • /
    • 2019
  • To understand how a Convolutional Neural Network (CNN) model captures the features of a pattern to determine which class it belongs to, in this paper, we use Gradient-weighted Class Activation Mapping (Grad-CAM) to visualize and analyze how well a CNN model behave on the CNU weeds dataset. We apply this technique to Resnet model and figure out which features this model captures to determine a specific class, what makes the model get a correct/wrong classification, and how those wrong label images can cause a negative effect to a CNN model during the training process. In the experiment, Grad-CAM highlights the important regions of weeds, depending on the patterns learned by Resnet, such as the lobe and limb on 미국가막사리, or the entire leaf surface on 단풍잎돼지풀. Besides, Grad-CAM points out a CNN model can localize the object even though it is trained only for the classification problem.

A Study on Shape Warpage Defect Detecion Model of Scaffold Using Deep Learning Based CNN (CNN 기반 딥러닝을 이용한 인공지지체의 외형 변형 불량 검출 모델에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.99-103
    • /
    • 2021
  • Warpage defect detecting of scaffold is very important in biosensor production. Because warpaged scaffold cause problem in cell culture. Currently, there is no detection equipment to warpaged scaffold. In this paper, we produced detection model for shape warpage detection using deep learning based CNN. We confirmed the shape of the scaffold that is widely used in cell culture. We produced scaffold specimens, which are widely used in biosensor fabrications. Then, the scaffold specimens were photographed to collect image data necessary for model manufacturing. We produced the detecting model of scaffold warpage defect using Densenet among CNN models. We evaluated the accuracy of the defect detection model with mAP, which evaluates the detection accuracy of deep learning. As a result of model evaluating, it was confirmed that the defect detection accuracy of the scaffold was more than 95%.

Two-stage Deep Learning Model with LSTM-based Autoencoder and CNN for Crop Classification Using Multi-temporal Remote Sensing Images

  • Kwak, Geun-Ho;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.719-731
    • /
    • 2021
  • This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.

Classification and Safety Score Evaluation of Street Images Using CNN (CNN을 이용한 거리 사진의 분류와 안전도 평가)

  • Bae, Kyu Ho;Yun, Jung Un;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.345-350
    • /
    • 2018
  • CNN (convolution neural network) has become the most popular artificial intelligence technique and shows remarkable performance in image classification task. In this paper, we propose a CNN-based classification method for various street images as well as a method of evaluating the safety score for the street. The proposed method consists of learning four types of street images using CNN and classifying input street images using the learned CNN model followed by evaluating the safety score. During the learning process, four types of street images are collected and augmented, and then CNN learning is performed. It is shown that learned CNN model classifies input images correctly and the safety scores are evaluated quantitatively by combining the probabilities of different street types.

Flight State Prediction Techniques Using a Hybrid CNN-LSTM Model (CNN-LSTM 혼합모델을 이용한 비행상태 예측 기법)

  • Park, Jinsang;Song, Min jae;Choi, Eun ju;Kim, Byoung soo;Moon, Young ho
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.45-52
    • /
    • 2022
  • In the field of UAM, which is attracting attention as a next-generation transportation system, technology developments for using UAVs have been actively conducted in recent years. Since UAVs adopted with these technologies are mainly operated in urban areas, it is imperative that accidents are prevented. However, it is not easy to predict the abnormal flight state of an UAV causing a crash, because of its strong non-linearity. In this paper, we propose a method for predicting a flight state of an UAV, based on a CNN-LSTM hybrid model. To predict flight state variables at a specific point in the future, the proposed model combines the CNN model extracting temporal and spatial features between flight data, with the LSTM model extracting a short and long-term temporal dependence of the extracted features. Simulation results show that the proposed method has better performance than the prediction methods, which are based on the existing artificial neural network model.

The Impact of Transforming Unstructured Data into Structured Data on a Churn Prediction Model for Loan Customers

  • Jung, Hoon;Lee, Bong Gyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4706-4724
    • /
    • 2020
  • With various structured data, such as the company size, loan balance, and savings accounts, the voice of customer (VOC), which is text data containing contact history and counseling details was analyzed in this study. To analyze unstructured data, the term frequency-inverse document frequency (TF-IDF) analysis, semantic network analysis, sentiment analysis, and a convolutional neural network (CNN) were implemented. A performance comparison of the models revealed that the predictive model using the CNN provided the best performance with regard to predictive power, followed by the model using the TF-IDF, and then the model using semantic network analysis. In particular, a character-level CNN and a word-level CNN were developed separately, and the character-level CNN exhibited better performance, according to an analysis for the Korean language. Moreover, a systematic selection model for optimal text mining techniques was proposed, suggesting which analytical technique is appropriate for analyzing text data depending on the context. This study also provides evidence that the results of previous studies, indicating that individual customers leave when their loyalty and switching cost are low, are also applicable to corporate customers and suggests that VOC data indicating customers' needs are very effective for predicting their behavior.