• 제목/요약/키워드: CNN architecture

검색결과 177건 처리시간 0.026초

Convolutional neural networks for automated tooth numbering on panoramic radiographs: A scoping review

  • Ramadhan Hardani Putra;Eha Renwi Astuti;Aga Satria Nurrachman;Dina Karimah Putri;Ahmad Badruddin Ghazali;Tjio Andrinanti Pradini;Dhinda Tiara Prabaningtyas
    • Imaging Science in Dentistry
    • /
    • 제53권4호
    • /
    • pp.271-281
    • /
    • 2023
  • Purpose: The objective of this scoping review was to investigate the applicability and performance of various convolutional neural network (CNN) models in tooth numbering on panoramic radiographs, achieved through classification, detection, and segmentation tasks. Materials and Methods: An online search was performed of the PubMed, Science Direct, and Scopus databases. Based on the selection process, 12 studies were included in this review. Results: Eleven studies utilized a CNN model for detection tasks, 5 for classification tasks, and 3 for segmentation tasks in the context of tooth numbering on panoramic radiographs. Most of these studies revealed high performance of various CNN models in automating tooth numbering. However, several studies also highlighted limitations of CNNs, such as the presence of false positives and false negatives in identifying decayed teeth, teeth with crown prosthetics, teeth adjacent to edentulous areas, dental implants, root remnants, wisdom teeth, and root canal-treated teeth. These limitations can be overcome by ensuring both the quality and quantity of datasets, as well as optimizing the CNN architecture. Conclusion: CNNs have demonstrated high performance in automated tooth numbering on panoramic radiographs. Future development of CNN-based models for this purpose should also consider different stages of dentition, such as the primary and mixed dentition stages, as well as the presence of various tooth conditions. Ultimately, an optimized CNN architecture can serve as the foundation for an automated tooth numbering system and for further artificial intelligence research on panoramic radiographs for a variety of purposes.

CNN 기반 한국 번호판 인식 (Korean License Plate Recognition Using CNN)

  • ;연승호;김재민
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1337-1342
    • /
    • 2019
  • 자동 한국 번호판 인식 (AKLPR)은 많은 분야에서 사용된다. 이러한 응용 분야에서 ALPR은 높은 인식률과 빠른 처리 속도가 중요하다. 최근 딥러닝의 발전으로 객체 감지 및 인식의 정확도와 속도가 향상 되고 있으며, 그 결과 딥러닝이 ALPR에 적용되고 있다. 특히 합성곱신경망(Convolutional Neural Network) 기반 객체 검출기가 ALPR에 적용되었다. 이러한 ALPR은 LP 영역을 검출하는 단계와 LP 영역의 문자를 검출 및 인식하는 단계로 구분되며, 각 단계는 별도의 CNN으로 구현된다. 본 논문에서는 단일 단계 CNN으로 ALPR을 구현하는 아키텍처를 제안한다. 제안하는 방법은 높은 인식률을 유지하면서 빠른 속도로 번호판 문자를 인식한다.

CNN-based Fast Split Mode Decision Algorithm for Versatile Video Coding (VVC) Inter Prediction

  • Yeo, Woon-Ha;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • 제8권3호
    • /
    • pp.147-158
    • /
    • 2021
  • Versatile Video Coding (VVC) is the latest video coding standard developed by Joint Video Exploration Team (JVET). In VVC, the quadtree plus multi-type tree (QT+MTT) structure of coding unit (CU) partition is adopted, and its computational complexity is considerably high due to the brute-force search for recursive rate-distortion (RD) optimization. In this paper, we aim to reduce the time complexity of inter-picture prediction mode since the inter prediction accounts for a large portion of the total encoding time. The problem can be defined as classifying the split mode of each CU. To classify the split mode effectively, a novel convolutional neural network (CNN) called multi-level tree (MLT-CNN) architecture is introduced. For boosting classification performance, we utilize additional information including inter-picture information while training the CNN. The overall algorithm including the MLT-CNN inference process is implemented on VVC Test Model (VTM) 11.0. The CUs of size 128×128 can be the inputs of the CNN. The sequences are encoded at the random access (RA) configuration with five QP values {22, 27, 32, 37, 42}. The experimental results show that the proposed algorithm can reduce the computational complexity by 11.53% on average, and 26.14% for the maximum with an average 1.01% of the increase in Bjøntegaard delta bit rate (BDBR). Especially, the proposed method shows higher performance on the sequences of the A and B classes, reducing 9.81%~26.14% of encoding time with 0.95%~3.28% of the BDBR increase.

Deep learning-based AI constitutive modeling for sandstone and mudstone under cyclic loading conditions

  • Luyuan Wu;Meng Li;Jianwei Zhang;Zifa Wang;Xiaohui Yang;Hanliang Bian
    • Geomechanics and Engineering
    • /
    • 제37권1호
    • /
    • pp.49-64
    • /
    • 2024
  • Rocks undergoing repeated loading and unloading over an extended period, such as due to earthquakes, human excavation, and blasting, may result in the gradual accumulation of stress and deformation within the rock mass, eventually reaching an unstable state. In this study, a CNN-CCM is proposed to address the mechanical behavior. The structure and hyperparameters of CNN-CCM include Conv2D layers × 5; Max pooling2D layers × 4; Dense layers × 4; learning rate=0.001; Epoch=50; Batch size=64; Dropout=0.5. Training and validation data for deep learning include 71 rock samples and 122,152 data points. The AI Rock Constitutive Model learned by CNN-CCM can predict strain values(ε1) using Mass (M), Axial stress (σ1), Density (ρ), Cyclic number (N), Confining pressure (σ3), and Young's modulus (E). Five evaluation indicators R2, MAPE, RMSE, MSE, and MAE yield respective values of 0.929, 16.44%, 0.954, 0.913, and 0.542, illustrating good predictive performance and generalization ability of model. Finally, interpreting the AI Rock Constitutive Model using the SHAP explaining method reveals that feature importance follows the order N > M > σ1 > E > ρ > σ3.Positive SHAP values indicate positive effects on predicting strain ε1 for N, M, σ1, and σ3, while negative SHAP values have negative effects. For E, a positive value has a negative effect on predicting strain ε1, consistent with the influence patterns of conventional physical rock constitutive equations. The present study offers a novel approach to the investigation of the mechanical constitutive model of rocks under cyclic loading and unloading conditions.

합성곱 신경망과 인코더-디코더 모델들을 이용한 익형의 유체력 계수와 유동장 예측 (Prediction of aerodynamic force coefficients and flow fields of airfoils using CNN and Encoder-Decoder models)

  • 서장훈;윤현식;김민일
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.94-101
    • /
    • 2022
  • The evaluation of the drag and lift as the aerodynamic performance of airfoils is essential. In addition, the analysis of the velocity and pressure fields is needed to support the physical mechanism of the force coefficients of the airfoil. Thus, the present study aims at establishing two different deep learning models to predict force coefficients and flow fields of the airfoil. One is the convolutional neural network (CNN) model to predict drag and lift coefficients of airfoil. Another is the Encoder-Decoder (ED) model to predict pressure distribution and velocity vector field. The images of airfoil section are applied as the input data of both models. Thus, the computational fluid dynamics (CFD) is adopted to form the dataset to training and test of both CNN models. The models are established by the convergence performance for the various hyperparameters. The prediction capability of the established CNN model and ED model is evaluated for the various NACA sections by comparing the true results obtained by the CFD, resulting in the high accurate prediction. It is noted that the predicted results near the leading edge, where the velocity has sharp gradient, reveal relatively lower accuracies. Therefore, the more and high resolved dataset are required to improve the highly nonlinear flow fields.

동작 인식을 위한 교사-학생 구조 기반 CNN (Teacher-Student Architecture Based CNN for Action Recognition)

  • ;이효종
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권3호
    • /
    • pp.99-104
    • /
    • 2022
  • 대부분 첨단 동작 인식 컨볼루션 네트워크는 RGB 스트림과 광학 흐름 스트림, 양 스트림 아키텍처를 기반으로 하고 있다. RGB 프레임 스트림은 모양 특성을 나타내고 광학 흐름 스트림은 동작 특성을 해석한다. 그러나 광학 흐름은 계산 비용이 매우 높기 때문에 동작 인식 시간에 지연을 초래한다. 이에 양 스트림 네트워크와 교사-학생 아키텍처에서 영감을 받아 행동 인식을 위한 새로운 네트워크 디자인을 개발하였다. 제안 신경망은 두 개의 하위 네트워크로 구성되어있다. 즉, 교사 역할을 하는 광학 흐름 하위 네트워크와 학생 역할을 하는 RGB 프레임 하위 네트워크를 연결하였다. 훈련 단계에서 광학 흐름의 특징을 추출하고 교사 서브 네트워크를 훈련시킨 다음 그 특징을 학생 서브 네트워크를 훈련시키기 위한 기준선으로 지정하여 학생 서브 네트워크에 전송한다. 테스트 단계에서는 광학 흐름을 계산하지 않고 대기 시간이 줄어들도록 학생 네트워크만 사용한다. 제안 네트워크는 실험을 통하여 정확도 면에서 일반 이중 스트림 아키텍처에 비해 높은 정확도를 보여주는 것을 확인하였다.

농작물 질병분류를 위한 전이학습에 사용되는 기초 합성곱신경망 모델간 성능 비교 (Performance Comparison of Base CNN Models in Transfer Learning for Crop Diseases Classification)

  • 윤협상;정석봉
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.33-38
    • /
    • 2021
  • Recently, transfer learning techniques with a base convolutional neural network (CNN) model have widely gained acceptance in early detection and classification of crop diseases to increase agricultural productivity with reducing disease spread. The transfer learning techniques based classifiers generally achieve over 90% of classification accuracy for crop diseases using dataset of crop leaf images (e.g., PlantVillage dataset), but they have ability to classify only the pre-trained diseases. This paper provides with an evaluation scheme on selecting an effective base CNN model for crop disease transfer learning with regard to the accuracy of trained target crops as well as of untrained target crops. First, we present transfer learning models called CDC (crop disease classification) architecture including widely used base (pre-trained) CNN models. We evaluate each performance of seven base CNN models for four untrained crops. The results of performance evaluation show that the DenseNet201 is one of the best base CNN models.

딥 뉴럴네트워크 기반의 소리 이벤트 검출 (Sound Event Detection based on Deep Neural Networks)

  • 정석환;정용주
    • 한국전자통신학회논문지
    • /
    • 제14권2호
    • /
    • pp.389-396
    • /
    • 2019
  • 본 논문에서는 다양한 구조의 딥 뉴럴 네트워크를 소리 이벤트 검출을 위하여 적용하였으며 공통의 오디오 데이터베이스를 이용하여 그들 간의 성능을 비교하였다. FNN, CNN, RNN 그리고 CRNN이 주어진 오디오데이터베이스 및 딥 뉴럴 네트워크의 구조에 최적화된 하이퍼파라미터 값을 이용하여 구현되었다. 구현된 방식 중에서 CRNN이 모든 테스트 환경에서 가장 좋은 성능을 보였으며 그 다음으로 CNN의 성능이 우수함을 알 수 있었다. RNN은 오디오 신호에서의 시간 상관관계를 잘 추적하는 장점에도 불구하고 CNN 과 CRNN에 비해서 저조한 성능을 보임을 확인할 수 있었다.

Effects of CNN Backbone on Trajectory Prediction Models for Autonomous Vehicle

  • Seoyoung Lee;Hyogyeong Park;Yeonhwi You;Sungjung Yong;Il-Young Moon
    • Journal of information and communication convergence engineering
    • /
    • 제21권4호
    • /
    • pp.346-350
    • /
    • 2023
  • Trajectory prediction is an essential element for driving autonomous vehicles, and various trajectory prediction models have emerged with the development of deep learning technology. Convolutional neural network (CNN) is the most commonly used neural network architecture for extracting the features of visual images, and the latest models exhibit high performances. This study was conducted to identify an efficient CNN backbone model among the components of deep learning models for trajectory prediction. We changed the existing CNN backbone network of multiple-trajectory prediction models used as feature extractors to various state-of-the-art CNN models. The experiment was conducted using nuScenes, which is a dataset used for the development of autonomous vehicles. The results of each model were compared using frequently used evaluation metrics for trajectory prediction. Analyzing the impact of the backbone can improve the performance of the trajectory prediction task. Investigating the influence of the backbone on multiple deep learning models can be a future challenge.

아동의 ADHD 진단 보조를 위한 기계 학습 기반의 뇌전도 분류 (Machine Learning-Based EEG Classification for Assisting the Diagnosis of ADHD in Children)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제24권10호
    • /
    • pp.1336-1345
    • /
    • 2021
  • Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common neurological disorders in children. The diagnosis of ADHD in children is based on the interviews and observation reports of parents or teachers who have stayed with them. Since this approach cannot avoid long observation time and the bias of observers, another approach based on Electroencephalography(EEG) is emerging. The goal of this study is to develop an assistive tool for diagnosing ADHD by EEG classification. This study explores the frequency bands of EEG and extracts the implied features in them by using the proposed CNN. The CNN architecture has three Convolution-MaxPooling blocks and two fully connected layers. As a result of the experiment, the 30-60 Hz gamma band showed dominant characteristics in identifying EEG, and when other frequency bands were added to the gamma band, the EEG classification performance was improved. They also show that the proposed CNN is effective in detecting ADHD in children.