• 제목/요약/키워드: CNN architecture

검색결과 177건 처리시간 0.021초

한국어 관객 평가기반 영화 평점 예측 CNN 구조 (CNN Architecture Predicting Movie Rating from Audience's Reviews Written in Korean)

  • 김형찬;오흥선;김덕수
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권1호
    • /
    • pp.17-24
    • /
    • 2020
  • 본 논문에서는 합성곱 신경망 기반의 영화 평점 예측 구조를 제안한다. 제안하는 구조는 문장 분류을 위하 고안된 TextCNN를 세 가지 측면에서 확장하였다. 첫 번째로 문자 임베딩을 이용하여 단어의 다양한 변형들을 처리할 수 있다. 두 번째로 주목 메커니즘을 적용하여 중요한 특징을 더욱 부각하였다. 세 번째로 활성 함수의 출력을 1-10 사이의 평점으로 만드는 점수 함수를 제안하였다. 제안하는 영화 평점 예측 구조를 평가하기 위해서 영화 리뷰 데이터를 이용하여 평가해 본 결과 기존의 방법을 사용했을 때보다 더욱 낮은 MSE를 확인하였다. 이는 제안하는 영화 평점 예측 구조의 우수성을 보여 주었다.

CNN-based damage identification method of tied-arch bridge using spatial-spectral information

  • Duan, Yuanfeng;Chen, Qianyi;Zhang, Hongmei;Yun, Chung Bang;Wu, Sikai;Zhu, Qi
    • Smart Structures and Systems
    • /
    • 제23권5호
    • /
    • pp.507-520
    • /
    • 2019
  • In the structural health monitoring field, damage detection has been commonly carried out based on the structural model and the engineering features related to the model. However, the extracted features are often subjected to various errors, which makes the pattern recognition for damage detection still challenging. In this study, an automated damage identification method is presented for hanger cables in a tied-arch bridge using a convolutional neural network (CNN). Raw measurement data for Fourier amplitude spectra (FAS) of acceleration responses are used without a complex data pre-processing for modal identification. A CNN is a kind of deep neural network that typically consists of convolution, pooling, and fully-connected layers. A numerical simulation study was performed for multiple damage detection in the hangers using ambient wind vibration data on the bridge deck. The results show that the current CNN using FAS data performs better under various damage states than the CNN using time-history data and the traditional neural network using FAS. Robustness of the present CNN has been proven under various observational noise levels and wind speeds.

CNN을 이용한 뇌전증 발작예측에 관한 연구 (A Study on the Epileptic Seizure Prediction using CNN)

  • 류상욱;이남화;이연수;조인휘;민경육;김택수
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.92-95
    • /
    • 2020
  • In this paper, the new architecture of seizure prediction using CNN and LSTM and DWT was presented. In the proposed architecture, EEG data was labeled into a preictal and interictal section, and DWT was adopted to the preprocessing process to apply the characteristics of the time and frequency domain of the processed EEG signal. Also, CNN was applied to extract the spatial characteristics of each electrode used for EEG measurement, and LSTM neural network was applied to verify the logical order of the preictal section. The learning of the proposed architecture utilizes the CHB-MIT Scalp EEG dataset, and the sliding window technique is applied to balance the dataset between the number of interictal sections and the number of preictal sections. As a result of the simulation of the proposed architecture, a sensitivity of 81.22% and an FPR of 0.174 were obtained.

가속 회로에 적합한 CNN의 Conv-XP 가지치기 (Conv-XP Pruning of CNN Suitable for Accelerator)

  • 우용근;강형주
    • 한국정보통신학회논문지
    • /
    • 제23권1호
    • /
    • pp.55-62
    • /
    • 2019
  • CNN은 컴퓨터 영상 인식 부분에서 높은 성능을 보여주고 있으나 많은 연산양을 요구하는 단점으로 인해 전력이나 연산 능력에 제한이 있는 임베디드 환경에서는 사용하기 어렵다. 이러한 단점을 극복하기 위해 CNN을 위한 가속회로나 가지치기 기법에 대한 연구가 많이 이루어지고 있다. 기존의 가지치기 기법은 가속 회로의 구조를 고려하지 않아서, 가지치기된 CNN을 위한 가속 회로는 비효율적인 구조를 가지게 된다. 이 논문에서는 가속 회로의 구조를 고려한 새로운 가지치기 기법인 Conv-XP 가지치기를 제안한다. Conv-XP 가지치기에서는 'X'와 '+' 모양의 두 가지 패턴으로만 가지치기함으로써, 이 기법으로 가지치기된 CNN을 위한 가속 회로의 구조를 단순하게 설계할 수 있도록 하였다. 실험 결과에 따르면, Conv-XP와 같이 가지치기 패턴을 제한하여도 CNN의 성능이 악화되지 않으며, 가속 회로의 면적은 12.8%을 감소시킬 수 있다.

Enhanced CNN Model for Brain Tumor Classification

  • Kasukurthi, Aravinda;Paleti, Lakshmikanth;Brahmaiah, Madamanchi;Sree, Ch.Sudha
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.143-148
    • /
    • 2022
  • Brain tumor classification is an important process that allows doctors to plan treatment for patients based on the stages of the tumor. To improve classification performance, various CNN-based architectures are used for brain tumor classification. Existing methods for brain tumor segmentation suffer from overfitting and poor efficiency when dealing with large datasets. The enhanced CNN architecture proposed in this study is based on U-Net for brain tumor segmentation, RefineNet for pattern analysis, and SegNet architecture for brain tumor classification. The brain tumor benchmark dataset was used to evaluate the enhanced CNN model's efficiency. Based on the local and context information of the MRI image, the U-Net provides good segmentation. SegNet selects the most important features for classification while also reducing the trainable parameters. In the classification of brain tumors, the enhanced CNN method outperforms the existing methods. The enhanced CNN model has an accuracy of 96.85 percent, while the existing CNN with transfer learning has an accuracy of 94.82 percent.

3차원 적층 구조 저항변화 메모리 어레이를 활용한 CNN 가속기 아키텍처 (CNN Accelerator Architecture using 3D-stacked RRAM Array)

  • 이원주;김윤;구민석
    • 전기전자학회논문지
    • /
    • 제28권2호
    • /
    • pp.234-238
    • /
    • 2024
  • 본 논문은 낮은 구동 전류 특성과 3차원 적층 구조로 확장시킬 수 있는 장점을 가진 3차원 적층형 이중 팁 RRAM을 CNN 가속기 아키텍처에 접목하는 연구를 수행한 논문이다. 3차원 적층형 이중 팁을 적층 형태의 병렬연결로 시냅스 어레이에 사용하여 멀티-레벨을 구현하였다. 이를 Network-on-chip 형태의 가속기 내에 DAC, ADC, 버퍼 및 레지스터, shift & add 회로 등 다양한 하드웨어 블록들과 함께 구성하여 CNN 가속기에 대한 시뮬레이션을 수행하였다. 시냅스 가중치와 활성화 함수의 양자화는 16-bit으로 가정하였다. 해당 가속기 아키텍처를 위한 병렬 파이프라인을 통해 CNN 연산을 시뮬레이션한 결과, 연산효율은 약 370 GOPs/W를 달성하였으며, 양자화에 의한 정확도 열화는 3 % 이내가 되는 결과를 나타냈다.

CNN 딥러닝을 활용한 경관 이미지 분석 방법 평가 - 힐링장소를 대상으로 - (Assessment of Visual Landscape Image Analysis Method Using CNN Deep Learning - Focused on Healing Place -)

  • 성정한;이경진
    • 한국조경학회지
    • /
    • 제51권3호
    • /
    • pp.166-178
    • /
    • 2023
  • 본 연구는 이용자들의 인식과 경험이 내재된 소셜미디어 사진에서 경관 이미지를 분석하기 위한 방법으로 CNN 딥러닝 방법을 소개하고 평가하는 데 그 목적이 있다. 본 연구에서는 힐링장소를 연구의 대상으로 설정하여 경관 이미지를 분석하였다. 연구를 위해 텍스트마이닝과 선행연구 고찰을 통해 힐링과 관련되는 7가지의 경관 형용사를 선정하였다. 이후 CNN 딥러닝 학습 사진 구축을 위해 50명의 평가자를 모집하였으며, 평가자들에게 포털사이트에서 '힐링', '힐링풍경', '힐링장소'로 검색되는 사진 중 7가지 형용사마다 가장 적합한 사진을 3장씩 수집하도록 하였다. 수집된 사진을 정제 및 데이터 증강 과정을 거쳐 CNN 모델을 제작하였다. 이후 힐링장소 경관 분석을 위해 포털사이트에서 '힐링'과 '힐링풍경'으로 검색되는 15,097장의 사진을 수집하여 이를 분류하였다. 연구결과 '기타'와 '실내'를 제외한 범주에서 '조용한'이 2,093장(22%)으로 가장 높게 나타났으며, '개방적인', '즐거운', '안락한', '깨끗한', '자연적인', '아름다운' 순으로 나타났다. CNN 딥러닝은 경관 이미지 분석에서도 결과를 도출 가능한 분석 방법임을 연구를 통해 알 수 있었다. 또한, 기존 경관 분석 방법을 보완할 수 있는 하나의 방법임을 시사하였고, 경관 이미지 학습 데이터 셋 구축을 통한 향후 심층적이고 다양한 경관 분석을 제안한다.

Voting and Ensemble Schemes Based on CNN Models for Photo-Based Gender Prediction

  • Jhang, Kyoungson
    • Journal of Information Processing Systems
    • /
    • 제16권4호
    • /
    • pp.809-819
    • /
    • 2020
  • Gender prediction accuracy increases as convolutional neural network (CNN) architecture evolves. This paper compares voting and ensemble schemes to utilize the already trained five CNN models to further improve gender prediction accuracy. The majority voting usually requires odd-numbered models while the proposed softmax-based voting can utilize any number of models to improve accuracy. The ensemble of CNN models combined with one more fully-connected layer requires further tuning or training of the models combined. With experiments, it is observed that the voting or ensemble of CNN models leads to further improvement of gender prediction accuracy and that especially softmax-based voters always show better gender prediction accuracy than majority voters. Also, compared with softmax-based voters, ensemble models show a slightly better or similar accuracy with added training of the combined CNN models. Softmax-based voting can be a fast and efficient way to get better accuracy without further training since the selection of the top accuracy models among available CNN pre-trained models usually leads to similar accuracy to that of the corresponding ensemble models.

Data anomaly detection for structural health monitoring using a combination network of GANomaly and CNN

  • Liu, Gaoyang;Niu, Yanbo;Zhao, Weijian;Duan, Yuanfeng;Shu, Jiangpeng
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.53-62
    • /
    • 2022
  • The deployment of advanced structural health monitoring (SHM) systems in large-scale civil structures collects large amounts of data. Note that these data may contain multiple types of anomalies (e.g., missing, minor, outlier, etc.) caused by harsh environment, sensor faults, transfer omission and other factors. These anomalies seriously affect the evaluation of structural performance. Therefore, the effective analysis and mining of SHM data is an extremely important task. Inspired by the deep learning paradigm, this study develops a novel generative adversarial network (GAN) and convolutional neural network (CNN)-based data anomaly detection approach for SHM. The framework of the proposed approach includes three modules : (a) A three-channel input is established based on fast Fourier transform (FFT) and Gramian angular field (GAF) method; (b) A GANomaly is introduced and trained to extract features from normal samples alone for class-imbalanced problems; (c) Based on the output of GANomaly, a CNN is employed to distinguish the types of anomalies. In addition, a dataset-oriented method (i.e., multistage sampling) is adopted to obtain the optimal sampling ratios between all different samples. The proposed approach is tested with acceleration data from an SHM system of a long-span bridge. The results show that the proposed approach has a higher accuracy in detecting the multi-pattern anomalies of SHM data.

가변적 템플릿 메모리를 갖는 디지털 프로그래머블 CNN 구현에 관한 연구 (A study on implementation digital programmable CNN with variable template memory)

  • 윤유권;문성룡
    • 전자공학회논문지C
    • /
    • 제34C권10호
    • /
    • pp.59-66
    • /
    • 1997
  • Neural networks has widely been be used for several practical applications such as speech, image processing, and pattern recognition. Thus, a approach to the voltage-controlled current source in areas of neural networks, the key features of CNN in locally connected only to its netighbors. Because the architecture of the interconnection elements between cells in very simple and space invariant, CNNs are suitable for VLSI implementation. In this paper, processing element of digital programmable CNN with variable template memory was implemented using CMOS circuit. CNN PE circuit was designe dto control gain for obtaining the optimal solutions in the CNN output. Performance of operation for 4*4 CNN circuit applied for fixed template and variable template analyzed with the result of simulation using HSPICE tool. As a result of simulations, the proposed variable template method verified to improve performance of operation in comparison with the fixed template method.

  • PDF