KSII Transactions on Internet and Information Systems (TIIS)
/
제18권3호
/
pp.570-590
/
2024
Breast cancer ranks among the most prevalent forms of malignancy and foremost cause of death by cancer worldwide. It is not preventable. Early and precise detection is the only remedy for lowering the rate of mortality and improving the probability of survival for victims. In contrast to present procedures, thermography aids in the early diagnosis of cancer and thereby saves lives. But the accuracy experiences detrimental impact by low sensitivity for small and deep tumours and the subjectivity by physicians in interpreting the images. Employing deep learning approaches for cancer detection can enhance the efficacy. This study explored the utilization of thermography in early identification of breast cancer with the use of a publicly released dataset known as the DMR-IR dataset. For this purpose, we employed a novel approach that entails the utilization of a pre-trained MobileNetV2 model and fine tuning it through transfer learning techniques. We created three models using MobileNetV2: one was a baseline transfer learning model with weights trained from ImageNet dataset, the second was a fine-tuned model with an adaptive learning rate, and the third utilized early stopping with callbacks during fine-tuning. The results showed that the proposed methods achieved average accuracy rates of 85.15%, 95.19%, and 98.69%, respectively, with various performance indicators such as precision, sensitivity and specificity also being investigated.
본 연구는 건축시 발생되는 폐기물의 자동분류를 위해 딥러닝 알고리즘을 활용해 건출 폐기물 데이터를 각각 목재 폐기물, 플라스틱 폐기물, 콘크리트 폐기물로 분류하는 두 모델들을 통해서 성능 비교를 한다. 건축 폐기물의 분류를 위해 사용된 딥러닝 알고리즘은 합성곱 신경망 이미지 분류 알고리즘 VGG-16과 NLP를 기반으로 이미지를 시퀀스화 시킨ViT, Vision Transformer 모델을 사용했다. 건축 폐기물 데이터 수집을 위해 이미지 데이터를 전 세계 검색엔진에서 크롤링 하였고, 육안으로도 명확히 구분하기 어렵거나, 중복되는 등 실험에 방해되는 이미지는 전부 제외하여 각 분류당 1천장씩 총 3천장의 이미지를 확보했다. 또한, 데이터 학습시에 모델의 정확도 향상에 도움을 주기 위해 데이터 확대 작업을 진행해 총 3만장의 이미지로 실험을 진행 하였다. 수집된 이미 데이터가 정형화 되어있지 않은 데이터 임에도 불구하고 실험 결과는 정확도가 VGG-16는 91.5%, ViT 는 92.7%의 결과가 나타났다. 이는 실제 건축폐기물 데이터 관리 작업에 실전 활용 가능성을 제시한 것으로 보인다. 본 연구를 바탕으로 추후에 객체 탐지 기법이나 의미론적 분할 기법까지 활용한다면, 하나의 이미지 안에서도 여러 세밀한 분류가 가능해 더욱 완벽한 분류가 가능할 것이다.
기후변화로 인한 대형 산불의 빈도가 증가함에 따라 극심한 인명 및 재산상의 피해를 초래하고 있다. 이로 인해 많은 식생이 소실되며, 그 강도와 발생 형태에 따라 생태계 변화에 영향을 끼친다. 생태계 변화는 다시 산불 발생을 유발하여 2차 피해를 야기한다. 따라서 산불 피해지에 대한 정확한 탐지 및 면적 산정의 중요성이 지속적으로 제기되고 있다. 효율적인 산불 피해지 모니터링을 위해 산불 발생 후 실시간 지형 및 기상정보는 물론 피해지역의 영상을 대규모로 취득할 수 있는 위성영상이 주로 활용되고 있다. 최근, 합성곱 신경망(convolution neural network, CNN) 기반 모델부터 고성능 트랜스포머(Transformer) 기반 모델에 이르기까지 딥러닝 알고리즘이 빠르게 발전하면서 산림원격탐사에서 이를 적용한 연구가 활발히 이루어지고 있다. 하지만 현재까지 적용된 딥러닝 모델은 제한적이며 현업에서의 합리적인 활용을 위한 정량적 성능평가에 대한 보고가 부족한 상황이다. 따라서 본 연구에서는 모델에 따른 성능향상과 데이터 설계에 따른 성능향상을 중점적으로 비교 분석하였다. 미국 캘리포니아 지역을 대상으로 CNN 기반 모델의 U-Net, High Resolution Network-Object Contextual Representation (HRNet-OCR)을 활용하여 산불 피해지 모델을 구축하였다. 또한, 기본 파장대역과 함께 식생활력도 및 지표의 수분함량 정도를 고려하고자 normalized difference vegetation index (NDVI), normalized burn ratio (NBR)와 같은 산불 관련 분광지수를 산출하여 입력 이미지로 사용하였다. U-Net의 mean intersection over union (mIoU)이 0.831, HRNet-OCR이 0.848을 기록하여 두 모델 모두 우수한 영상분할 성능을 보였다. 또한, 밴드 반사도뿐 아니라 분광지수를 추가한 결과 모든 조합에서 평가지표 값이 상승하여 분광지수를 활용한 입력 데이터 확장이 픽셀 세분화에 기여함을 확인하였다. 이와 같은 딥러닝 방법론을 발전시킨다면 우리나라의 산불 피해지에 대한 신속한 파악 및 복구 계획 수립의 기초자료로 활용될 수 있을 것으로 기대된다.
제4차 산업혁명의 등장과 경제성장으로 인한 '국민 삶의 질 향상' 요구 증대로 인해 의료서비스의 질과 의료비용에 대한 국민들의 요구수준이 향상되고 있으며, 이로 인해 인공지능이 의료현장에 도입되고 있다. 하지만 인공지능이 의료분야에 활용된 사례를 살펴보면 '삶의 질'에 직접적인 영향을 끼치는 만성피부질환에 활용된 사례는 부족한 실정이며, 만성피부질환 중 대표적 질병인 아토피피부염은 정성적 진단 방법으로 인해 진단의 객관성을 확보할 수 없다는 한계가 존재한다. 본 연구에서는 아토피피부염의 객관적 중증도 평가 방법을 마련하여 아토피피부염 환자의 삶의 질을 향상시키고자 다음과 같은 연구를 수행하였다. 첫째, 가톨릭대학교 의과대학 성모병원의 데이터베이스로부터 아토피피부염 환자의 이미지 데이터를 수집했으며, 수집된 이미지 데이터에 대한 정제 및 라벨링 작업을 수행하여 모델 학습과 검증에 적합한 데이터를 확보했다. 둘째, 지능형 아토피피부염 중증도 진단 모형에 적합한 이미지 인식 알고리즘을 파악하기 위해 다양한 CNN 알고리즘들을 병변별 학습용 데이터로 학습시키고, 검증용 데이터를 활용하여 해당 모델의 이미지 인식 정확도를 측정했다. 실증분석 결과 홍반(Erythema)의 경우 'ResNet V1 101', 긁은 정도(Excoriation)의 경우 'ResNet V2 50'이 90% 이상의 정확도를 기록하였으며, 태선화(Lichenification)의 경우 학습용 데이터 부족의 한계로 인해 두 병변보다 낮은 89%의 정확도를 보였다. 해당 결과를 통해 이미지 인식 알고리즘이 단순한 사물 인식 분야뿐만 아니라 전문적 지식이 요구되는 분야에도 높은 성능을 나타낸다는 것을 실증적으로 입증했으며, 본 연구는 실제 아토피피부염 환자의 이미지 데이터를 활용했다는 측면에서 실제 임상환경에서 활용성이 높을 것으로 사료된다.
차량 충돌 경보용 레이더 시스템의 개발에 있어 표적 추적의 정확도와 신뢰도는 매우 중요한 요소이다. 여러 표적을 동시에 추적할 때 중요한 것은 표적과 측정치와의 데이터 연관(data association) 이며, 부적절한 측정치가 어느 표적과 연관되면 그 표적은 트랙을 벗어나 추적능력을 잃어버릴 수 있고 심지어 다른 표적의 추적에도 영향을 줄 수 있다 지금까지 발표된 대부분의 데이터 연관 필터들은 근접하여 이동하는 표적들의 경우 이와 같은 문제점을 보여왔다 따라서, 현재 개발되고 있는 많은 알고리즘들은 이러한 데이터 연 관 문제의 해결에 초점을 맞추고 있다 본 논문에서는 순서통계(order statistics)를 이용한 새로운 다중 표적의 데이터 연관 방법에 대하여 서술하고자 한다 OSPDA와 OSJPDA로 불리는 제안된 방법은 각각 PDA 필터 또는 JPDA 필터에서 계산된 연관 확률을 이용하며 이 연관 확률을 결정 논리(dicision logic)에 의한 가중치로 함수화 하여 표적과 측정치 사이에 최적 혹은 최적 근처의(near optimal) 데이터 연관이 가능하도록 한 것이다 시뮬레이션 결과를 통해, 제안한 방법은 기존의 NN 필터, PDA 필터, 그리고 JPDA 필터의 성능과 비교 분석되었으며, 그 결과 제안한 OSPDA, OSJPDA 필터는 PDA, JPDA 필터보다 추적 정확도에 대해 각각 약 18%, 19% 이상으로 성능이 향상됨을 확인하였다 제안한 방법은 CAN을 통해 차량 엔진 등의 ECU와 통신하도록 개발된 DSP 보드를 이용하여 구현되었다
본 논문에서는 차량이 움직일 때 발생하는 카메라의 움직임, 도로상의 광원에 강건한 지능형 전조등 제어 시스템을 제안한다. 후보광원을 검출할 때 카메라의 원근 범위 추정 모델을 기반으로 한 ROI (Region of Interest)를 사용하며 이는 FROI (Front ROI)와 BROI (Back ROI)로 나뉘어 사용된다. ROI내에서 차량의 전조등과 후미등, 반사광 및 주변 도로의 조명들은 2개의 적응적 임계값에 의해 세그먼트화 된다. 세그먼트화 된 광원 후보군들로부터 후미등은 적색도(redness)와 Haar-like특징에 기반한 랜덤포레스트 분류기에 의해 검출된다. 전조등과 후미등 분류 과정에서 빠른 학습과 실시간 처리를 위해 SVM(Support Vector Machine) 또는 CNN(Convolutional Neural Network)을 사용하지 않고 랜덤포레스트 분류기를 사용했다. 마지막으로 페어링(Pairing) 단계에서는 수직좌표 유사성, 광원들간의 연관성 검사와 같은 사전 정의된 규칙을 적용한다. 제안된 알고리즘은 다양한 야간 운전환경을 포함하는 데이터에 적용한 결과, 최근의 관련연구 보다 향상된 검출 성능을 보여주었다.
컨포멀 코팅은 PCB(Printed Circuit Board)를 보호하는 기술로 PCB의 고장을 최소화한다. 코팅의 결함은 PCB의 고장과 연결되기 때문에 성공적인 컨포멀 코팅 조건을 만족하기 위해서 코팅면에 기포가 발생했는지 검사한다. 본 논문에서는 영상 신호 처리를 적용하여 고위험군의 문제성 기포를 검출하는 알고리즘을 제안한다. 알고리즘은 문제성 기포의 후보를 구하는 단계와 후보를 검증하는 단계로 구성된다. 기포는 가시광 영상에서 나타나지 않지만, UV(Ultra Violet) 광원에서는 육안으로 구별이 가능하다. 특히, 문제성 기포의 중심은 밝기가 어둡고 테두리는 높은 밝기를 가진다. 이러한 밝기 특성을 논문에서는 협곡과 산맥 특징이라 부르고 두 가지 특징이 동시에 나타나는 영역을 문제성 기포의 후보라 하였다. 그러나 후보 중에는 기포가 아닌 후보가 존재할 수 있기 때문에 후보를 검증하는 단계가 필요하다. 후보 검증 단계에서는 합성곱 신경망 모델을 이용하였고, ResNet이 다른 모델과 비교하였을 때 성능이 가장 우수하였다. 본 논문에서 제시한 알고리즘은 정확률(Precision) 0.805, 재현율(Recall) 0.763, F1-점수(F1-score) 0.767의 성능을 보였고, 이러한 결과는 기포 검사 자동화에 대한 충분한 가능성을 보여준다.
Intracranial hemorrhage (ICH) refers to acute bleeding inside the intracranial vault. Not only does this devastating disease record a very high mortality rate, but it can also cause serious chronic impairment of sensory, motor, and cognitive functions. Therefore, a prompt and professional diagnosis of the disease is highly critical. Noninvasive brain imaging data are essential for clinicians to efficiently diagnose the locus of brain lesion, volume of bleeding, and subsequent cortical damage, and to take clinical interventions. In particular, computed tomography (CT) images are used most often for the diagnosis of ICH. In order to diagnose ICH through CT images, not only medical specialists with a sufficient number of diagnosis experiences are required, but even when this condition is met, there are many cases where bleeding cannot be successfully detected due to factors such as low signal ratio and artifacts of the image itself. In addition, discrepancies between interpretations or even misinterpretations might exist causing critical clinical consequences. To resolve these clinical problems, we developed a diagnostic model predicting intracranial bleeding and its subtypes (intraparenchymal, intraventricular, subarachnoid, subdural, and epidural) by applying deep learning algorithms to CT images. We also constructed a visualization tool highlighting important regions in a CT image for predicting ICH. Specifically, 1) 27,758 CT brain images from RSNA were pre-processed to minimize the computational load. 2) Three different CNN-based models (ResNet, EfficientNet-B2, and EfficientNet-B7) were trained based on a training image data set. 3) Diagnosis performance of each of the three models was evaluated based on an independent test image data set: As a result of the model comparison, EfficientNet-B7's performance (classification accuracy = 91%) was a way greater than the other models. 4) Finally, based on the result of EfficientNet-B7, we visualized the lesions of internal bleeding using the Grad-CAM. Our research suggests that artificial intelligence-based diagnostic systems can help diagnose and treat brain diseases resolving various problems in clinical situations.
텍스트 데이터가 특정 범주에 속하는지 판별하는 문장 분류에서, 문장의 특징을 어떻게 표현하고 어떤 특징을 선택할 것인가는 분류기의 성능에 많은 영향을 미친다. 특징 선택의 목적은 차원을 축소하여도 데이터를 잘 설명할 수 있는 방안을 찾아내는 것이다. 다양한 방법이 제시되어 왔으며 Fisher Score나 정보 이득(Information Gain) 알고리즘 등을 통해 특징을 선택 하거나 문맥의 의미와 통사론적 정보를 가지는 Word2Vec 모델로 학습된 단어들을 벡터로 표현하여 차원을 축소하는 방안이 활발하게 연구되었다. 사전에 정의된 단어의 긍정 및 부정 점수에 따라 단어의 임베딩을 수정하는 방법 또한 시도하였다. 본 연구는 문장 분류 문제에 대해 선택적 단어 제거를 수행하고 임베딩을 적용하여 문장 분류 정확도를 향상시키는 방안을 제안한다. 텍스트 데이터에서 정보 이득 값이 낮은 단어들을 제거하고 단어 임베딩을 적용하는 방식과, 정보이득 값이 낮은 단어와 코사인 유사도가 높은 주변 단어를 추가로 선택하여 텍스트 데이터에서 제거하고 단어 임베딩을 재구성하는 방식이다. 본 연구에서 제안하는 방안을 수행함에 있어 데이터는 Amazon.com의 'Kindle' 제품에 대한 고객리뷰, IMDB의 영화리뷰, Yelp의 사용자 리뷰를 사용하였다. Amazon.com의 리뷰 데이터는 유용한 득표수가 5개 이상을 만족하고, 전체 득표 중 유용한 득표의 비율이 70% 이상인 리뷰에 대해 유용한 리뷰라고 판단하였다. Yelp의 경우는 유용한 득표수가 5개 이상인 리뷰 약 75만개 중 10만개를 무작위 추출하였다. 학습에 사용한 딥러닝 모델은 CNN, Attention-Based Bidirectional LSTM을 사용하였고, 단어 임베딩은 Word2Vec과 GloVe를 사용하였다. 단어 제거를 수행하지 않고 Word2Vec 및 GloVe 임베딩을 적용한 경우와 본 연구에서 제안하는 선택적으로 단어 제거를 수행하고 Word2Vec 임베딩을 적용한 경우를 비교하여 통계적 유의성을 검정하였다.
최근에는 딥러닝을 이용한 의료영상 분야의 자동진단 솔루션에 대한 연구 및 개발이 활발하게 진행되고 있다. 본 연구에서는 컨볼루션 인공 신경망 기반의 딥러닝 모델인 Inception V3를 이용하여 흉부 X선 영상의 폐렴 유무 분류에 대한 신속하면서도 정확한 분류 딥러닝 모델링을 찾고자 하였다. 이러한 이유로 딥러닝 모델링에 최적화알고리즘 AdaGrad, RMS Prop, Adam을 적용한 후 학습률을 0.01과 0.001로 선택적으로 적용하여 딥러닝 모델링을 구현한 후 흉부 X선 영상 폐렴 유무 분류에 대한 성능을 비교 평가하였다. 연구결과 분류 모델의 성능과 인공신경망의 학습상태를 평가할 수 있는 검증 모델링에서는 학습률 0.001과 최적화 알고리즘으로 Adam을 적용한 경우 흉부 X 선 영상의 폐렴 유무 분류에 대한 딥러닝 모델링의 성능이 가장 우수하다는 것을 알 수 있었다. 그리고 최근 딥러닝 모델링의 설계 시 최적화 알고리즘으로 주로 적용이 되는 Adam의 경우 학습률 0.01과 0.001의 선택적인 적용에서 우수한 성능 및 우수한 Metric 결과를 나타내었다. 테스트 모델링에 대한 Metric 평가에서는 학습률 0.1을 적용한 AdaGrad 가 가장 우수한 결과를 나타내었다. 이러한 결과를 통하여 이진법 기반의 의료영상 분류 딥러닝 모델링의 설계 시, 신속하면서도 정확한 성능을 기대하기 위해서는 최적화 알고리즘으로 Adam을 적용하는 경우에는 학습률 0.01, AdaGrad를 적용하는 경우에는 학습률은 0.01을 우선적으로 적용할 것을 권고한다. 그리고 향후 유사 연구 시, 본 연구 결과는 기초자료로 제시될 것이라 사료되며 딥러닝을 이용한 의료영상의 자동 진단 목적의 헬스·바이오 산업에서 유용한 자료로 활용되기를 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.