• Title/Summary/Keyword: CNG

Search Result 336, Processing Time 0.023 seconds

Comparison of CNG and LPG Combustion Characteristics in a Large-sized Gas Engine (대형 가스엔진에서 CNG와 LPG 연료의 연소 특성 비교)

  • Yongrae Kim;Cheolwoong Park;Hyungjun Jang;Sangho Lee;Young Choi;Sunyoep Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.1-6
    • /
    • 2024
  • An easy approach to replacing older diesel engines is to replace them with gas engines using fuels such as CNG or LPG. However, fuels such as LPG have not been applied to large gas engines in many cases, so it is not easy to predict the performance of gas engines based on CNG fuel. Accordingly, in this study, we applied LPG fuel to a CNG-based large gas engine and examined the performance and emission characteristics. In particular, the results were confirmed through tests to see how effective EGR, which is widely used for NOx reduction, is applied. As a result, in the case of LPG, even though the operating conditions were secured to a level that excludes serious knocking, mild knocking at high loads was still found to be more frequent than CNG. However, it was possible to secure an output level similar to CNG in the high-speed range. Efficiency was higher due to a faster combustion speed than CNG, and it was confirmed that it was possible to simultaneously reduce NOx and the frequency of mild knocking through the application of EGR.

Compressed Natural Gas Bus & Liquefied Petroleum Gas Vehicle (압축천연가스(CNG)버스와 액화석유가스(LPG)자동차)

  • 윤재건
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.3
    • /
    • pp.28-32
    • /
    • 2001
  • Using the CNG(compressed natural gas) and LPG(liquified petroleum gas) as the automotive fuel will be expanded because of their clean effect to the environmental air qualify. But these programs of gas using expansion would have a difficulty due to public consideration of gas utilities as a big hazard. The Ministry of Environment has an ambitious plan to substitute more than 25,000 buses with CNG and ensure more than 200 CNG refueling stations as well by the year of 2007. However, it is very difficult to establish new CNG and LPG refueling stations because of expanded safety distance than ever before by several major explosion accidents.

  • PDF

A Study on Natural Gas Vehicle Conversion by Diesel Engine Improvement (디젤엔진개량에 의한 천연가스차량전환에 관한 연구)

  • Han, Yeong Chul;O, Yong Seok;Na, Wan Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.94-94
    • /
    • 1999
  • Natural gas is considered to be on e of the most promising candidates for a clean substitute fuel and a great amount of research on the compressed natural gas(CNG) fueled vehicle has been performed. In this s tudy, we try to understand the property of CNG fuel with using CNG engine experiment. In order to present the direction and application of CNG, we experiment with various operating conditions that is, spark timing, A/F ratio, air quantity and fuel quantity, etc. 11,967 cc engine was used in the experiment and the engine fuel ratio was determined in the way that the performance of dedicated CNG engine is corresponded to that of existing diesel engine. The performance and dedicated CNG engine were measured by changing the fuel injection timing. The dedicated CNG engine was proved to be good in describing the experimental results and according to the actual road test, acceleration and constant speed driving for dedicated CNG engine was better than existing diesel engine.

Nanoparticles Emission Characteristics of Heavy-Duty CNG Engine with Oxidation Catalyst (산화촉매를 장착한 대형 CNG 엔진의 나노입자 배출특성)

  • Kim, T.J.;Kim, H.N.;Choi, B.C.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.27-33
    • /
    • 2008
  • Natural gas has been considered one of the most promising alternative fuels for transportation because of its abundance as well as its ability to reduce regulated pollutants. We measured emission characteristics of nanoparticles from lean burn H/D(Heavy-Duty) CNG (Compressed Natural Gas) engine equipped with oxidation catalysts. The experiments were carried out to measure the emission and engine performance according to the ESC test cycle. The CO and THC conversion efficiencies on the best catalyst in the ESC test cycle achieved about 91 % and 83 %, respectively. From the measurement by the SMPS, the number of nanoparticles emitted from H/D CNG engine is reduced by about 99 % which is more than that of 2.5 L diesel engine. The particle number concentrations of H/D CNG engine were almost nanoparticles. Nanoparticles smaller than 30 nm emitted from the H/D CNG engine and diesel engine equipped with a CDPF(Catalyzed Diesel Particulate Filter) were quite similar. However, the particles bigger than 30nm from the CNG engine were smaller than the particles from diesel engine equipped with a CDPF. The higher the CNG engine load, the lower the particle number from engine-out, but it increased slightly at full load.

  • PDF

A Study on the Quantitative Risk Assessment of Hydrogen-CNG Complex Refueling Station (수소-CNG 복합충전소 정량적 위험성평가에 관한 연구)

  • Kang, Seung-Kyu;Huh, Yun-Sil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • This study performed a quantitative risk assessment for hydrogen-CNG complex refueling stations. Individual and societal risks were calculated by deriving accident scenarios that could occur at hydrogen and CNG refueling stations and by considering the frequency of accidents occurring for each scenario. As a result of the risk assessment, societal risk levels were within the acceptable range. However, individual risk has occurred outside the allowable range in some areas. To identify and manage risk components, high risk components were discovered through risk contribution analysis. High risks at the hydrogen-CNG complex refueling station were large leakage from CNG storage containers, compressors, and control panels. The sum of these risks contributed to approximately 88% of the overall risk of the fueling station. Therefore, periodic and intensive safety management should be performed for these high-risk elements.

Effect of CNG Heating Value Variations on Emissions Characteristics in a Diesel-CNG Dual-Fuel Engine (CNG 발열량 변화가 Diesel-천연가스 혼소엔진 배기 특성에 미치는 영향)

  • Jang, Hyongjun;Yoon, Junkyu;Lee, Sunyoup;Kim, Yongrae;Kim, Junghwan;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.43-49
    • /
    • 2016
  • In this paper, purpose of study is emissions characteristics according to effects of heating value variations of CNG fuel in a dual-fuel engine fueled by diesel and natural gas. For heating value variation of CNG fuel, nitrogen gas was mixed with pure CNG fuel. So the higher heating value was changed from $10,400kcal/Nm^3$ to $9,400kcal/Nm^3$. Under one condition of CNG substitution rate was fixed at 80%, diesel fuel was injected at a fixed injection timing of 16 CAD BTDC and fuel pressure was also fixed at 110 MPa. The condition of tested engine was 1800 rpm and 500Nm. Emissions were sampled in exhaust pipe was located at downstream turbocharger. As a result, emissions characteristics were checked in heating value variations of CNG fuel with mixed nitrogen gas THC, $CH_4$ and CO emissions decreased and NOx and $CO_2$ increased.

The Effect of Fuel Composition on Emissions and Combustion of CNG Engine at Partial Load (부분부하에서 연료 조성이 천연가스 엔진의 연소 및 배기에 미치는 영향)

  • Kim, Hyung-Min;Lee, Ki-Hyung;Kim, Bong-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3288-3293
    • /
    • 2007
  • Compressed natural gas has good potential for alternative vehicle fuel due to its economical and clean characteristics. However, the composition of natural gas based on production location is known to affect performance and emissions of CNG engine. Thus, the objective of this paper is to clarify the effect of fuel composition on combustion and emissions of CNG engine. This paper presents combustion characteristics obtained from running a 2.5L, 4-cylinder CNG engine retrofitted IDI diesel engine with engine dynamometer. BSFC, emissions, fuel consumption and combustion pressure were measured under steady state operating conditions especially at partial load for CNG engine. Based on the experimental results, we found that CNG composition affects engine performance, fuel conversion efficiency and burning rate.

  • PDF

Cost-Benefit Analysis for the Replacement with the CNG Buses in South Chungcheong Province (충청남도에서 CNG 버스로의 전환을 위한 비용-편익 분석)

  • Choi, Yeon-Suk;Park, Byoung-Tae
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.417-425
    • /
    • 2013
  • According to industrialization and urbanization the number of increasing cars is attributable to an explosive increase of the vehicle emissions. In this study, in consideration of the population and local transportation characteristics of South Chungcheong Province the environmental and economic cost-benefit analyses are performed to evaluate whether the CNG bus conversion gives what kind of effects. Based on the analysis result the expansion and distribution plan of CNG bus is proposed for South Chungcheong Province, and the local supply policy model is also proposed considering the acquisition and management of the economic situation of CNG charging infrastructure and the small transportation companies.

An Investigation on the Proper Hydrogen Mixing Rate in Heavy-Duty Hydrogen-CNG Engine (수소-천연가스 혼합연료기관의 최적 수소 분사율 검토)

  • LlM, H.S.;KIM, Y.Y.;LEE, JONG T.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.89-97
    • /
    • 2004
  • A heavy duty hydrogen enriched CNG engine has the possibility to obtain stable operation at ultra lean condition and to reduce emission extremely. And it can also serve as a so called bridge technology between the current fossil fueled engine and the future hydrogen power system. The emission, torque and brake thermal efficiency characteristics of a heavy-duty hydrogen-CNG engine were investigated to determine the proper mixing rate of hydrogen and CNG. It was found that the proper mixing rates at ${\lambda}=1.4$ and ${\lambda}=1.6$ were around 20% and 30% for hydrogen addition rate respectively.

Numerical Study of Combustion Characteristics in CNG DI Engine using Gaseous Sphere Injection Model (기체구 분사 모델을 이용한 CNG DI 엔진의 연소특성 수치해석)

  • Choi, Mingi
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.171-177
    • /
    • 2019
  • This paper describes numerical study of combustion characteristics in CNG(compressed natural gas) DI(direct injection) engine using gaseous sphere injection model. Simulations were conducted using KIVA-3V Release 2 code. Gaseous sphere injection model, which is modified model of liquid fuel injection, was used to simulate the CNG direct injection. Until now, a very fine mesh smaller than the injector nozzle has been required to resolve the gas-jet inflow boundary. However, the gaseous sphere injection model simulates gaseous fuel injection using a coarse mesh. This model injects gaseous spheres as in liquid fuel injection and the gaseous spheres evaporate together without the latent heat of evaporation. Therefore, it does not require a very fine mesh and reduce calculation time. Combustion simulation were performed under various injection timings and injection pressures.