• Title/Summary/Keyword: CNC가공

Search Result 378, Processing Time 0.026 seconds

Development of tool-life prediction program to determine the optimal machining conditions in mold machining (금형 가공 시 최적 가공조건을 결정하기 위한 공구수명 예측 프로그램 개발)

  • Soon-Ok Park;Min-Hak Kim;Sun-Kyung Lee;Sung-Taek Jung
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2023
  • Recently, with the emergence of the 4th industrial revolution, the demand for smart factories and factory automation is increasing. In this study, a tool life prediction program was developed to select optimal machining conditions using CNC milling equipment, which is widely used in flexible production and automation. The equipment used in the experiment was Hwacheon Machine Tool's 5-axis machining equipment, and the tool used was a 17F2R tool. For the machining path, the down-milling cutting method was selected and long-term machining was performed. The analysis standard for side wear on the tool was set at 0.1 to 0.2 mm, and tool life data and wear data were obtained in the cutting experiment. The program was created through the data obtained from the experiment, and a prediction rate of over 90% was secured when comparing the experimental data and the predicted data.

  • PDF

A Study on the Cutting Forces and Tool Deformation when Flat-ended Pocket Machining (평엔드밀 포켓가공시 절삭력과 공구변형에 관한 연구)

  • Choi, Sung-Yun;Kwon, Dae-Gyu;Park, In-Su;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.28-33
    • /
    • 2017
  • Recently, the operation of precision pocket machining has been studied for the high speed and accuracy in industry to increase production and quality. Moreover, the demand for products with complex 3D free-curved surface shapes has increasing rapidly in the development of computer systems, CNC machining, and CAM software in various manufacturing fields, especially in automotive engineering. The type of aluminum (Al6061) that is widely used in aerospace fields was used in this study, and end-mill down cutting was conducted in fillet cutting at a corner with end-mill tools for various process conditions. The experimental results may demonstrate that the end mill cutter with four blades is more advantageous than that of the two blades on shape forming in the same condition precise machining conditions. It was also found that cutting forces and tool deformation increased as the cutting speed increased. When the tool was located at $45^{\circ}$ (four locations), the corner was found to conduct the maximum cutting force rather than the start point of the workpiece. The experimental research is expected to increase efficiency when the economical precision machining methods are required for various cutting conditions in industry.

A Fast Generation Method of CAM Model for Machining of Jet Engines Using Shape Search (형상 검색을 이용한 제트엔진 절삭가공을 위한 빠른 CAM 모델 생성 방법)

  • Kim, Byung Chul;Song, Ilhwan;Shin, Suchul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.327-336
    • /
    • 2016
  • Manufacturers of aircraft engines have introduced computer-aided manufacturing (CAM) software to operate and control computerized numerical control (CNC) machine tools. However, the generation of a CAM model is a time consuming and error-prone task since machining procedure and operational details are manually defined. For the automatic generation of a CAM model, feature recognition techniques have been widely studied. However, their recognition coverage is limited so that complex shapes such as a jet engine cannot be fully developed. This study presents a novel approach to quickly generate a CAM model from a CAD model using shape search techniques. Once an operator sets a machining operation as a reference operation, the same shapes as the shapes referenced by the operation are searched. The reference operation is copied to the positions of the searched shapes. The proposed method was verified through experiments with a jet engine compressor case.

Standardization of machining process for progressive press die (순차이송형 프레스 금형의 가공표준화)

  • Lee, S.M.;Lee, S.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.114-125
    • /
    • 1993
  • In the present study the newly developed CAD/CAM system is applied to the process of the molding design, machining for mini-sized and precise processive die, and the production of press-stamped parts. When the design of a die was completed by means of CAD, wire cut NC data were generated with the aid of a design drawing in the CAD system and then inputed into the wire cut machine, and with the aid of a hole chart which had been made for this purpose, all the data were classified into the categories of CNC milling, jig boring, jig grinding, and machine center, and then developing a program of generating NC data, errors in process were reduced and programming time was shortened. The program was developed by using Autolisp language which was built-in the CAD, and realizing the intergation of designing a die, generating and processing NC data directly by a designer, designing time and machinery processing time were shorted. And the traditionally required working time for design. NC program required 6 days of work becomes 4 days of work by using the developed CAD/CAM system so that the efficiency shows 150% of the reduction working time. The prpgram of the design of the automation a progressive die mold was developed in the PC-Class Autocad system, therefore development expense could be reduced, and the integration of the CAD/CAM of the progressive die mold with the standard DB being built could be realized.

  • PDF

Relationality of Metal Mould Manufacturing for the Automatic Production (자동생산을 위한 금형가공의 합리화)

  • 현동훈;이용성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2286-2293
    • /
    • 1993
  • The study presents the development of a cost-effective CAD/CAM system for metal moulds by use of personal computer. In the personal CAD/CAM system named DKSYS, metal moulds are defined by the operations of basic elements such as prism, pyramid and sphere, plane, rotational body, and surface elements including curved surface. The internal expression of shape elements in the computer is based on the wire model, which is a set of cross-sectional curves of the shape elements. With the addition of OMS system to CAD/CAM system the optimum cutting condition can be selected automatically. After programming NC information with the form definition and the optimum cutting condition, the metallic mould can be formed by transferring cutting information to CNC machine through DNC system. Using a computer for the above process, it is possible to increase the productivity and reduce the cost.

Development of a Dedicated CAM System for Human Bust Machining (흉상 환조 가공을 위한 전용 CAM시스템 개발)

  • Jeong, Hoi-Min;Park, Joon-Chul;Chung, Yun-Chan
    • IE interfaces
    • /
    • v.15 no.2
    • /
    • pp.147-151
    • /
    • 2002
  • Presented in this paper is a prototype of dedicated CAM system for a human bust, not a relief, machining. The input of this system is a STL file which comes from measuring machine, and the output is machining data for a 3-axis CNC milling machine with an index table. The system consists of three main modules, which are shape import and transformation, modeling of jig and fixture, and calculation of machining area. Proposed system architecture and the main modules are briefly described. To get machining region for semi-finish and finish machining stages, two concepts of machining area, machinable and scannable, were tried. Machinable area was suitable for the purpose.

A Study on the Construction of Database in Cutting Conditions (절삭가공조건의 데이터베이스 구축에 관한 연구)

  • 이정길;손덕수;이우영;유중학;임경화
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.354-358
    • /
    • 2004
  • There was not the evident analysis about the cutting process of CNC machining, and wouldn't be difficult to estimate the result of machining for the various cutting conditions. Therefore they were not founded the systemic technology about the optimum cutting conditions and selection of cutting tools. So this study have investigated the common facts for needs through the end-mill cutting machining by Machining-Centers or High-speed cutting machines, and developed the user-centered intelligent decision system to selection of the methodology about cutting conditions to improve the machining efficiency of end-mill cutting process.

  • PDF

Generation of Turned Surface by Chattering (선반에서의 채터에 의한 가공 표면 시뮬레이션)

  • 홍민성;김종민
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.25-30
    • /
    • 2003
  • In metal cutting chatter is the unstable cutting phenomenon which caused by the interaction between the dynamics of the chip removal process and the structural dynamics of machine tool. When the vibration and chatter on, it reduces tool life and results in poor surface roughness and low productivity of the machining process. In order to observe the effect of chatter on the turned surface, the surface simulation model based on the surface-shaping system are developed under the ideal condition and the occurrence of the regenerative chatter, and it is compared with experiment of profile. In this study, the experiments were conducted in a CNC lathe without cutting fluid to investigate the phenomenon of the chatter.

NC Tool Paths Program Development for the Pocket Machining (포켓 가공을 위한 NC 공구경로의 프로그램 개발)

  • Oh, Seon;Kwon, Young-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-81
    • /
    • 2003
  • Pocket machining is metal removal operation commonly used for creating depressions in machined parts. Numerically controlled milling is the primary means for machining complex die surface. These complex surfaces are generated by a milling cutter which removes material as it traces out pre-specified tool paths. To machine, a component on a CNC machine, part programs which define the cutting tool path are needed. This tool path is usually planned from CAD, and converted to a CAM machine input format. In this paper I proposed a new method for generating NC tool paths. This method generates automatically NC tool paths with dynamic elimination of machining errors in 2$\frac{1}{2}$ arbitrary shaped pockets. This paper generates a spiral-like tool path by dynamic computing optimal pocket of the pocket boundary contour based on the type and size of the milling cutter, the geometry of the pocket contour and surface finish tolerance requirements. This part programming system is PC based and simultaneously generates a G-code file.

A Study on the Sculptured surface mold by using CAM system (사각방지용 자동차 측면거울의 개발에 관한 연구)

  • 신근하
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.119-124
    • /
    • 2000
  • In this paper based on geometric optics and geometric modeling aspheric surface of the side mirror mold with dead angle reduced have been designed and machined in a CNC machining center, Surface roughness of the mold was evaluat-ed by usin the surface shaping system. Surface generating simulation of a ball endmill process is investigated. Through the simulation based on the surface-shaping system 3-D engineered surfaces and properties of engineered surfaces are obtained, Computer simulation provides the effective working conditions through the prediction of geometric properties of engineered surfaces. The rear view mirror and room mirror play important role on the safe driving condition as a observation of environment but the rear view mirror can not provide complete information of driving environments due to the existence of the dead angle. The analysis on the shape of formed mirror shows that the proposed me? improves range of a driver's sight.

  • PDF