• Title/Summary/Keyword: CNBr

Search Result 30, Processing Time 0.022 seconds

Purification and Immobilization of Cyclodextrin glucanotransferase from recombinant Bacillus subtilis

  • Seo, Hyo-Jin;Kim, Yeong-Hwa;Kim, Seong-Gu
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.671-674
    • /
    • 2001
  • Cyclodextrin glucanotransferase(CGTase) derived from recombinant Bacillus subtilis was partial purified and concentrated by ultrafiltration. The prepared CGTase were immobilized on various matrices by ionic interaction or covalent bond. CGTase covalently bound on CNBr-activated sepharose 4B were identified to be the highest immobilization activity among various immobilization methods. The optimum conditions for CGTase immobilization were determined; $30^{\circ}C$, 6Orpm, using O.2g CNBr-activated sepharose 4B in pH 6.0 phosphate buffer and 9hr immobilization.

  • PDF

CNBr-activated Sepharose 4B에 고정화된 laccase에 의한 염료의 decolorization

  • Gwon, Sin;Kim, Eun-Jeong;Ryu, Won-Ryul;Jo, Mu-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.635-639
    • /
    • 2001
  • A laccase produced the Trametes sp. was immobilized on CNBr-activated Sepharose 4B(CS4B) and tested for repeated-batch and continuous decolorization of dye. After immobilization, the enzyme was active in wider pH and temperature range, and its heat stability was greatly improved compared to those of the free laccase. Immobilized laccase was efficient for both repeated-batch and contionuous decolorization.

  • PDF

Immobilization of Transglucosidase from Aspergillus niger (Aspergillus niger 유래의 Transglucosidase의 고정화)

  • Ahn, Jang-Woo;Park, Kwan-Wha;Seo, Jin-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.320-325
    • /
    • 1997
  • Transglucosidase (TG) from Aspergillus niger was immobilized on various carriers by several immobilization methods such as ionic binding, adsorption, entrapment, covalent linkage and metal chelation to improve the process performance. The covalent linkage with CNBr-activated sepharose 4B was found as the best method for immobilization of TG based on the immobilization yield which was 61.3%. The immobilization through ionic binding and adsorption gave 33.1% and 22.5% yield respectively but both methods were not selected due to lower yield than covalent linkage using CNBr-Sepharose 4B. Internal diffusion resistance in beads developed by entrapment were not suitable factor in producing final target products. Covalent linkage of TG on magnesium silicate, silica gel and glass bead and metal chelation method didn't result in higher yield than the selected one, either.

  • PDF

Amperometric Determination of Histamine using Immobilized Enzyme Reactors with Different Carriers (담체 고정화 효소 반응기를 이용한 Histamine의 전기화학적 측정)

  • Ji, Jung-Youn;Jeon, Yeon-Hee;Kim, Mee-Ra
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.1
    • /
    • pp.88-94
    • /
    • 2012
  • Histamine is a kind of primary biogenic amine arising from the decarboxylation of the amino acid L-histidine. The toxicology of histamine and its occurrence and formation in foods are especially emphasized in fermented foods. In this study, the biosensor for detection of histamine with functionalized multi-walled carbon nanotubes (MWCNT) was developed. We also searched for an appropriate insoluble substrate to immobilize the enzyme. The developed biosensor showed a detection limit of $0.1{\mu}M$ hydrogen peroxide. The enzyme reactor was prepared with diamine oxidase immobilized on insoluble carriers including CNBr-activated sepharose 4B, calcium alginate, and controlled pore size glass beads. The coupling efficiency of CNBr-activated sepharose 4B, calcium alginate, and controlled pore size glass beads were 48.5%, 40.3%, and 51.0%, respectively. In addition, the response currents on histamine with each immobilized enzyme reactor prepared with CNBr-activated sepharose 4B, calcium alginate, and controlled pore size glass beads were 120 nA, 110 nA, and 140 nA at $100{\mu}M$ of histamine concentration, respectively. Therefore, it is suggested that controlled pore size glass beads are the best carriers for immobilizing diamine oxidase to detect histamine in this biosensor.

Expression and Purification of Delta Sleep-Inducing Peptide in Escherichia coli

  • Oh, Kwang-Seok;Na, Do-Kyung;Kweon, Mee-Hyang;Sung, Ha-Chin
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.620-623
    • /
    • 2003
  • The delta sleep-inducing peptides (DSIP, Trp-Ala-Gly-Gly-Asp-Ala-Ser-Gly-Glu) is an important regulatory hormone, controlling hypothalamus and pituitary functions. In the current study, an expression system was designed for the rapid and economic expression oi recombinant DSIP for biophysical studies. Artificially synthesized oligonucleotides encoding DSIP were cloned into a pGEX-KG vector and expressed in E. coli (BL21). The recombinant GST-DSIP was then readily purified using a GST affinity column. To obtain intact DSIP from the GST-DSIP, thrombin cleavage and a CNBr reaction were successively carried out. The DSIP in the CNBr reaction mixture was subjected to RP-HPLC purification to yield 1.2 mg DSIP from a 1 liter culture of E. coli. Identification of the DSIP was peformed using MALDI-MS and an amino acid composition analysis.

Simple Iysine sensing system using $CO_{2}$ electrode and enzyme immobilized to CNBr-activated sepharose 4B

  • Kim, Eun-Jung;Koh, Kwang-Nak;Choi, Myung-Sook
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.437-444
    • /
    • 1997
  • A potentiometric L-lysine-selective sensor is described for the direct determination of lysine. The sensor system is based on a carbon dioxide gas sensing electrode and an L-lysine decarboxylase immobilized to CNBr-activated sepharose 4B. A highly selective L-lysine sensor has been prepared with immobilizing enzyme slurry put into reaction buffer solution. The optimum conditions for the measurement were evaluated by various experiments. This sensor exhibits a linear response to L-lysine concentrations from $10^{-4}M$ to $10^{-1}M$. Response time of this lysine sensor is shorter than 30secs and the immobilized enzyme slurry is stable over one year.

  • PDF

Peptide Sequence Analysis of the CNBr-Digested 34-36 kd Sperminogen

  • Yu, Hyunkyung;Yi, Lee-S.-H.
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.199-203
    • /
    • 2001
  • Sperminogen was purified from the acid extracts of boar spermatozoa and partial peptide sequence of the 34-36 kd sperminogen was determined. Acid extracts of boar spermatozoa was gel-filtered through Sephadex G-75, and the 34-36 kd sperminogen was purified by preparative SDS-PAGE. The sperminogen bands were sliced out, and 34-36 kd sperminogen were eluted from the gel fragments and was subjected to peptide sequencing. Since the amino termini were blocked for Edman degradation method, internal amino acid sequences of the eluted 34-36 kd sperminogen were obtained from CNBr-digested peptides of sperminogen. Among several bands resolved on tricine SDS-PAGE, 14, 22 and 26 kd peptides were subjected to peptide sequencing. The ana1yzed amino acid sequences of the 26 and 22 kd peptides showed high homologies with that of the zona pellucida binding protein, Sp38, and the analyzed amino acid sequence of the 14 kd peptide showed neither sequence homology nor similarity with any known proteins.

  • PDF

Analysis of Amperometric Response to Cholesterol according to Enzyme-Immobilization Methods (효소고정화 방법에 따른 콜레스테롤 검출용 바이오센서의 전류 감응도 분석)

  • Ji, Jung-Youn;Kim, Mee-Ra
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.21 no.5
    • /
    • pp.731-738
    • /
    • 2011
  • Cholesterol is the precursor of various steroid hormones, bile acid, and vitamin D with functions related to regulation of membrane permeability and fluidity. However, the presence of excess blood cholesterol may lead to arteriosclerosis and hypertension. Moreover, dietary cholesterol may affect blood cholesterol levels. Generally, cholesterol determination is performed by spectrophotometric or chromatographic methods, but these methods are very time consuming and costly, and require complicated pretreatment. Thus, the development of a rapid and simple analysis method for measuring cholesterol concentration in food is needed. Multi-walled carbon nanotube (MWCNT) was functionalized to MWCNT-$NH_2$ via MWCNT-COOH to have high sensitivity to $H_2O_2$. The fabricated MWCNT-$NH_2$ was attached to a glassy carbon electrode (GCE), after which Prussian blue (PB) was coated onto MWCNT-$NH_2$/GCE. MWCNT-$NH_2$/PB/GCE was used as a working electrode. An Ag/AgCl electrode and Pt wire were used as a reference electrode and counter electrode, respectively. The sensitivity of the modified working electrode was determined based on the amount of current according to the concentration of $H_2O_2$. The response increased with an increase of $H_2O_2$ concentration in the range of 0.5~500 ${\mu}M$ ($r^2$=0.96) with a detection limit of 0.1 ${\mu}M$. Cholesterol oxidase was immobilized to aminopropyl glass beads, CNBr-activated sepharose, Na-alginate, and toyopearl beads. The immobilized enzyme reactors with aminopropyl glass beads and CNBr-activated sepharose showed linearity in the range of 1~100 ${\mu}M$ cholesterol. Na-alginate and toyopearl beads showed linearity in the range of 5~50 and 1~50 ${\mu}M$ cholesterol, respectively. The detection limit of all immobilized enzyme reactors was 1 ${\mu}M$. These enzyme reactors showed high sensitivity; especially, the enzyme reactors with CNBr-activated sepharose and Na-alginate indicated high coupling efficiency and sensitivity. Therefore, both of the enzyme reactors are more suitable for a cholesterol biosensor system.

Immobilization of Cyclodextrin Glucanotransferase for Production of 2-O-\alpha-D-Glucopyranosyl L-Ascorbic Acid. (2-O-\alpha-D-Glucopyranosyl L-Ascorbic acid 생산을 위한 Cyclodextrin glucanotransferase의 고정화)

  • 성경혜;김성구;장경립;전홍기
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.368-376
    • /
    • 2003
  • Cyclodextrin glucanotransferase (CGTase) from Paenibacillus sp. JB-13 was immobilized on various carriers by several immobilization methods such as ionic binding, covalent linkage and ultrafiltration to improve the process performance. The ultrafiltration and covalent linkage with CNBr-activated sepharose 4B were found as the best method for immobilization of CGTase. The ability of CGTase immobilization onto CNBr-activated sepharose 4B was as high as 18,000 units/g resin when the conditions was as follows: contact time 9 hrs at $37^{\circ}C$, pH 6.0, 100 nm and enzyme loading 24,000 units/g resin. The optimum conditions for production of 2-O-$\alpha$-D-Glucopyranosyl L-Ascorbic acid by immobilized CGTase turned out to be: pH 5.0, temperature $37^{\circ}C$, 20% substrate solution containing 8% (w/v) of soluble starch and 12% (w/v) of L-ascorbic acid sodium salt, 100 rpm, far 25 hrs and with 800 units of immobilized CGTase/ml substrate solution. Moreover the CGTase activity could be stably maintained for 8 times of repetitive reactions after removing products by ultrafiltration through YM 10 membrane.

Continuous Degradation of azo dye by Immobilized laccase (고정화 laccase에 의한 azo 염료의 연속 분해)

  • Kwon, Sin;Ryu, Won-Ryul;Cho, Moo-Hwan
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.189-194
    • /
    • 2002
  • Laccase produced from Trametes sp. was immobilized on CNBr-activated Sepharose-4B (CAS4B) and tested for degradation of azo dyes. Laccase was efficiently immobilized on CAS4B. Immobilization of laccase on CAS4B increased pH, thermal and proteolytic stabilities. Optimum pH and temperature of immobilized laccase were pH 3 and 40$\^{C}$, respectively as same as those of free laccase. The K$\_$m/($\mu$mol/ml) values of free and immobilized laccase for Reactive Blue 19 as the substrate were 0.34 and 2.07, respectively V$\_$max/($\mu$mol/mL$.$min) values of them were 0.12 and 0.1, respectively. In repeated batch reactions, conditions retained high stability and degradation of dye for immobilized laccase were pH 5 and 30$\^{C}$. HBT didn\\`t decrease highly activity of immobilized laccase. Immobilized laccase was very stable for degrading dyes continuously in a packed-bed reactor containing laccase immobilized on CAS4B. For continuous degradation of 100 $\mu$M Reactive Blue 19 and 50 $\mu$M Acid Red 57 in the presence of 0.1 mM HBT under optimum conditions, immobilized laccase retained 70% of degradation ability even after 30 hours.