• Title/Summary/Keyword: CMPPT

Search Result 3, Processing Time 0.017 seconds

Design and Implementation of Photovoltaic Power Conditioning System using a Current-based Maximum Power Point Tracking

  • Lee, Sang-Hoey;Kim, Jae-Eon;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.606-613
    • /
    • 2010
  • This paper proposes a novel current-based maximum power point tracking (CMPPT) method for a single-phase photovoltaic power conditioning system (PV PCS) by using a modified incremental conductance method. The CMPPT method simplifies the entire control structure of the power conditioning system and uses an inherent current source characteristic of solar cell arrays. Therefore, it exhibits robust and fast response under a rapidly changing environmental condition. Digital phase locked loop technique using an all-pass filter is also introduced to detect the phase of grid voltage, as well as the peak voltage. Controllers of dc/dc boost converter, dc-link voltage, and dc/ac inverter are designed for coordinated operation. Furthermore, a current control using a pseudo synchronous d-q transformation is employed for grid current control with unity power factor. A 3 kW prototype PV PCS is built, and its experimental results are given to verify the effectiveness of the proposed control schemes.

Design and implementation of 3 kW Photovoltaic Power Conditioning System using a Current based Maximum Power Point Tracking (전류형 MPPT를 이용한 3 kW 태양광 인버터 시스템 제어기 설계 및 구현)

  • Cha, Han-Ju;Lee, Sang-Hoey;Kim, Jae-Eon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1796-1801
    • /
    • 2008
  • In this paper, a new current based maximum power point tracking (CMPPT) method is proposed for a single phase photovoltaic power conditioning system and the current based MPPT modifies incremental conductance method. The current based MPPT method makes the entire control structure of the power conditioning system simple and uses an inherent current source characteristic of solar cell array. In addition, digital phase locked loop using an all pass filter is introduced to detect phase of grid voltage as well as peak voltage. Controllers about dc/dc boost converter, dc-link voltage, dc/ac inverter is designed for a coordinated operation. Furthermore, PI current control using a pseudo synchronous d-q transformation is employed for grid current control with unity power factor. 3kW prototype photovoltaic power conditioning system is built and its experimental results are given to verify the effectiveness of the proposed control schemes.

Mitigation of Low Frequency AC Ripple in Single-Phase Photovoltaic Power Conditioning Systems

  • Lee, Sang-Hoey;An, Tae-Pung;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.328-333
    • /
    • 2010
  • A photovoltaic power conditioning system (PV PCS) that contains single-phase dc/ac inverters tends to draw an ac ripple current at twice the output frequency. Such a ripple current perturbs the operating points of solar cells continuously and it may reduce the efficiency of the current based maximum power point tracking technique (CMPPT). In this paper, the ripple current generation in a dc link and boost inductor is analyzed using the ac equivalent circuit of a dc/dc boost converter. A new feed-forward ripple current compensation method to incorporate a current control loop into a dc/dc converter for ripple reduction is proposed. The proposed feed-forward compensation method is verified by simulation and experimental results. These results show a 41.8 % reduction in the peak-to peak ac ripple. In addition, the dc/ac inverter control system uses an automatic voltage regulation (AVR) function to mitigate the ac ripple voltage effect in the dc link. A 3kW PV PCS prototype has been built and its experimental results are given to verify the effectiveness of the proposed method.