• Title/Summary/Keyword: CMP polishing pad

Search Result 154, Processing Time 0.024 seconds

Physics of the Coefficient of Friction in CMP

  • Borucki, Len;Philipossian, Ara;Zhuang, Yun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.79-83
    • /
    • 2007
  • The implications of a theory of lubricated pad asperity wafer contact are traced through several fundamental areas of chemical-mechanical polishing. The hypothesized existence of a nanolubrication layer underlies a high accuracy model of polish rates. It also provides a quantitative explanation of a power law relationship between the coefficient of friction and a measure of pad surface flattening. The theory may further be useful for interpreting friction changes during polishing, and may explain why the coefficient of friction is sometimes observed to have a temperature or velocity dependence.

Development of Multiple CMP Monitoring System for Consumable Designs

  • Park, Sun-Joon;Park, Boum-Young;Kim, Sung-Ryul;Jeong, Hae-Do;Kim, Hyoung-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.11-14
    • /
    • 2007
  • Consumables used in Chemical Mechanical Polishing (CMP) have been played important role to improve quality and productivity. Since the properties of consumables constantly change with various reasons, such as shelf time, manufactured time, lot to lot variation from supplier and so on, CMP results are not constant during the process. Also, CMP process results are affected by multiple sources from wafer, conditioner, pad and slurry. Therefore, multiple sensing systems are required to monitor CMP process variation. In this paper, the authors focus on development of monitoring system for CMP process which consist of force, temperature and displacement sensor to measure the signal from CMP process. With monitoring systems mentioned above, complex CMP phenomena can be investigated more clearly.

Numerical Analysis of a Slurry Flow on a Rotating CMP Pad Using a Two-phase Flow Model

  • Nagayama, Katsuya;Sakai, Tommi;Kimura, Keiichi;Tanaka, Kazuhiro
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.8-10
    • /
    • 2008
  • Chemical mechanical polishing (CMP) is a very precise planarization technique where a wafer is polished by a slurry-coated pad. A slurry is dropped on the rotating pad surface and is supplied between the wafer and the pad. This research aims at reducing the slurry consumption and removing waste particles quickly from the wafer. To study the roles of grooves, slurry flows were simulated using the volume of fluid method (two-phase model for air and slurry) for pads with no grooves, and for pads with circular grooves.

A Study on CMP Pad Thickness Profile Measuring Device and Method (CMP 패드 두께 프로파일 측정 장치 및 방법에 관한 연구)

  • Lee, Tae-kyung;Kim, Do-Yeon;Kang, Pil-sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1051-1058
    • /
    • 2020
  • The chemical mechanical planarization (CMP) is a process of physically and chemically polishing the semiconductor substrate. The planarization quality of a substrate can be evaluated by the within wafer non-uniformity (WIWNU). In order to improve WIWNU, it is important to manage the pad profile. In this study, a device capable of non-contact measurement of the pad thickness profile was developed. From the measured pad profile, the profile of the pad surface and the groove was extracted using the envelope function, and the pad thickness profile was derived using the difference between each profile. Thickness profiles of various CMP pads were measured using the developed PMS and envelope function. In the case of IC series pads, regardless of the pad wear amount, the envelopes closely follow the pad surface and grooves, making it easy to calculate the pad thickness profile. In the case of the H80 series pad, the pad thickness profile was easy to derive because the pad with a small wear amount did not reveal deep pores on the pad surface. However, the pad with a large wear amount make errors in the lower envelope profile, because there are pores deeper than the grooves. By removing these deep pores through filtering, the pad flatness could be clearly confirmed. Through the developed PMS and the pad thickness profile calculation method using the envelope function, the pad life, the amount of wear and the pad flatness can be easily derived and used for various pad analysis.

Relationship between Frictional Signal and Polishing Characteristics of ITO Thin Film (ITO 박막의 연마특성과 마찰력 신호와의 상관관계)

  • Chang O.M.;Park K.H.;Park B.Y.;Seo H.D.;Kim H.J.;Jeong H.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.479-480
    • /
    • 2006
  • The purpose of this paper is to investigate the relationship between CMP(Chemical Mechanical Polishing) characteristics of ITO thin film and friction signal by using the CMP monitoring system. Suba 400 pad and MSW2000 slurry of the Rohm & Haas Co. was used in this experiment to investigate the charateristics of ITO CMP. From this experiment, it is proven that the coefficient of friction is related to uniformity of the removal rate of the ITO thin film. Therefore, the prediction of polishing result would be possible by measuring friction signal.

  • PDF

Dishing and Erosion Evaluations of Tungsten CMP Slurry in the Orbital Polishing System

  • Lee, Sang-Ho;Kang, Young-Jae;Park, Jin-Goo;Kwon, Pan-Ki;Kim, Chang-Il;Oh, Chan-Kwon;Kim, Soo-Myoung;Jhon, Myung-S.;Hur, Se-An;Kim, Young-Jung;Kim, Bong-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.163-166
    • /
    • 2006
  • The dishing and the erosion were evaluated on the tungsten CMP process with conventional and new developed slurry. The tungsten thin film was polished by orbital polishing equipment. Commercial pattern wafer was used for the evaluation. Both slurries were pre tested on the oxide region on the wafer surface and the removal rate was not different very much. At the pattern density examination, the erosion performance was increased at all processing condition due to the reduction of thickness loss in new slurry. However, the dishing thickness was not remarkably changed at high pattern density despite of the improvement at low pattern density. At the large pad area, the reduction of dishing thickness was clearly found at new tungsten slurry.

Characteristics of Friction Affecting CMP Results (CMP 결과에 영향을 미치는 마찰 특성에 관한 연구)

  • Park, Boumyoung;Lee, Hyunseop;Kim, Hyoungjae;Seo, Heondeok;Kim, Gooyoun;Jeong, Haedo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1041-1048
    • /
    • 2004
  • Chemical mechanical polishing (CMP) process was studied in terms of tribology in this paper. CMP performed by the down force and the relative motion of pad and wafer with slurry is typically tribological system composed of friction, wear and lubrication. The piezoelectric quartz sensor for friction force measurement was installed and the friction force was detected during CMP process. Various friction signals were attained and analyzed with the kind of pad, abrasive and abrasive concentration. As a result of experiment, the lubrication regime is classified with ηv/p(η, v and p; the viscosity, relative velocity and pressure). The characteristics of friction and material removal mechanism is also different as a function of the kind of abrasive and the abrasive concentration in slurry. Especially, the material removal per unit distance is directly proportional to the friction force and the non~uniformity has relation to the coefficient of friction.

Characteristic of the Wear and Lubrication using the Friction Froce Measurement in CMP Process (CMP 공정에서 마찰력 측정을 통한 마멸 및 윤활 특성에 관한 연구)

  • Park, Boum-Young;Kim, Hyoung-Jae;Seo, Heon-Deok;Kim, Goo-Youn;Lee, Hyun-Seop;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.231-234
    • /
    • 2004
  • Chemical mechanical polishing(CMP) process was studied in terms of tribology in this paper. CMP performed by the down force and the relative motion of pad and wafer with the slurry is typically tribological system composed of friction, wear and lubrication. The piezoelectric quartz sensor for friction force measurement was installed and the friction force was detected during CMP process. Various coefficient of friction was attained and analyzed with the kind of pad, abrasive and the abrasive concentration. The lubrication regime is also classified with ${\eta}v/p(\eta,\;v\;and\;p;$ the viscosity, relative velocity and pressure). Especially, the co-relation not only between the friction force and the removal per unit distance but also between the coefficient of friction and within-wafer-nonuniformity was estimated.

  • PDF

CMP Properties of ITO Thin Film with a Control of Temperature in Pad Conditioning Process (패드 컨디셔닝 온도 변화가 ITO 박막 연마특성에 미치는 영향)

  • Choi, Gwon-Woo;Kim, Nam-Hoon;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.70-71
    • /
    • 2005
  • The material that is both conductive in electricity and transparent to the visible ray is called transparent conducting thin film. It is investigated the performance of ITO-CMP process using commercial silica slurry with the various conditioning temperatures by control of de-ionized water (DIW). Removal rate of ITO thin film was improved after CMP process after pad conditioning at the high temperature by improved exclusion of slurry residues in polishing pad..

  • PDF

A study on the recycle of reused slurry abrasives (CMP 폐슬러리내의 필터링된 연마 입자 재활용에 관한 연구)

  • Kim, Gi-Uk;Seo, Yong-Jin;Park, Sung-Woo;Jeong, So-Young;Kim, Chul-Bok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.50-53
    • /
    • 2003
  • CMP (chemical mechanical polishing) process remained to solve several problems in deep sub-micron integrated circuit manufacturing process. especially consumables (polishing pad, backing film, slurry, pad conditioner), one of the most important components in the CMP system is the slurry. Among the composition of slurries (buffer solution, bulk solution, abrasive particle, oxidizer, inhibitor, suspension, antifoaming agent, dispersion agent), the abrasive particles are important in determining polish rate and planarization ability of a CMP process. However, the cost of abrasives is still very high. So, in order to reduce the high COO (cost of ownership) and COC (cost of consumables) in this paper, we have collected the silica abrasive powders by filtering after subsequent CMP process for the purpose of abrasive particle recycling. And then, we have studied the possibility of recycle of reused silica abrasive through the analysis of particle size and hardness. Also, we annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slurry. As our experimental results, we obtained the comparable removal rate and good planarity with commercial products. Consequently, we can expect the saving of high cost slurry.

  • PDF