• Title/Summary/Keyword: CMP(Chemical mechanical planarization)

Search Result 218, Processing Time 0.03 seconds

Global planarization Characteristic of $WO_3$ ($WO_3$ 박막의 광역평탄화 특성)

  • Lee, Woo-Sun;Ko, Pi-Ju;Choi, Gwon-Woo;Kim, Tae-Wan;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.89-92
    • /
    • 2004
  • Chemical mechanical polishing (CMP) process has been widely used to planarize dielectric layers, which can be applied to the integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of in the defect-free inter-level dielectrics (ILD). we investigated the performance of $WO_3$ CMP used silica slurry, ceria slurry, tungsten slurry. In this paper, the effects of addition oxidizer on the $WO_3$ CMP characteristics were investigated to obtain the higher removal rate and lower non-uniformity.

  • PDF

Characterization of Electrolyte in Electrochemical Mechanical Planarization (Cu ECMP 공정에서의 전해질 특성평가)

  • Kwon, Tae-Young;Kim, In-Kwon;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.57-58
    • /
    • 2006
  • Chemical-mechanical planarization (CMP) of Cu has used currently in semiconductor process for multilevel metallization system. This process requires the application of a considerable down-pressure to the sample in the polishing, because porous low-k films used in the Cu-multilevel interconnects of 65nm technology node are often damaged by mechanical process. Also, it make possible to reduce scratches and contaminations of wafer. Electrochemical mechanical planarization (ECMP) is an emerging extension of CMP. In this study, the electrochemical mechanical polisher was manufactured. And the static and dynamic potentiodynamic curve of Cu were measured in KOH based electrolyte and then the suitable potential was found.

  • PDF

Predicting and Interpreting Quality of CMP Process for Semiconductor Wafers Using Machine Learning (머신러닝을 이용한 반도체 웨이퍼 평탄화 공정품질 예측 및 해석 모형 개발)

  • Ahn, Jeong-Eon;Jung, Jae-Yoon
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.61-71
    • /
    • 2019
  • Chemical Mechanical Planarization (CMP) process that planarizes semiconductor wafer's surface by polishing is difficult to manage reliably since it is under various chemicals and physical machinery. In CMP process, Material Removal Rate (MRR) is often used for a quality indicator, and it is important to predict MRR in managing CMP process stably. In this study, we introduce prediction models using machine learning techniques of analyzing time-series sensor data collected in CMP process, and the classification models that are used to interpret process quality conditions. In addition, we find meaningful variables affecting process quality and explain process variables' conditions to keep process quality high by analyzing classification result.

  • PDF

A study on the global planarization characteristics in end point stage for device wafers (다바이스 웨이퍼의 평탄화와 종점 전후의 평탄화 특성에 관한 연구)

  • 정해도;김호윤
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.12
    • /
    • pp.76-82
    • /
    • 1997
  • Chemical mechanical polishing (CMP) has become widely accepted for the planarization of multi-interconnect structures in semiconductor manufacturing. However, perfect planarization is not so easily ahieved because it depends on the pattern sensitivity, the large number of controllable process parameters, and the absence of a reliable process model, etc. In this paper, we realized the planarization of deposited oxide layers followed by metal (W) polishing as a replacement for tungsten etch-back process for via formation. Atomic force microscope (AFM) is used for the evaluation of pattern topography during CMP. As a result, AFM evaluation is very attractive compared to conventional methods for the measurment of planarity. mOreover, it will contribute to analyze planarization characteristics and establish CMP model.

  • PDF

Effect of shape and surface properties of hydrothermaled silica particles in chemical mechanical planarization of oxide film (실리카 입자의 형상과 표면 특성이 산화막 CMP에 미치는 영향)

  • Jeong, Jeong-Hwan;Lim, Hyung-Mi;Kim, Dae-Sung;Paik, Un-Gyu;Lee, Seung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.161-161
    • /
    • 2008
  • The oxide film of silicon wafer has been mainly polished by fumed silica, colloidal silica or ceria slurry. Because colloidal silica slurry is uniform and highly dispersed composed of spherical shape particles, by which the oxide film polished remains to be less scratched in finishing polishing process. Even though the uniformity and spherical shape is advantage for reducing the scratch, it may also be the factor to decrease the removal rate. We have studied the correlation of silica abrasive particles and CMP characteristics by varying pH, down force, and table rotation rate in polishing. It was found that the CMP polishing is dependent on the morphology, aggregation, and the surface property of the silica particles.

  • PDF

Reproducible Chemical Mechanical Polishing Characteristics of Shallow Trench Isolation Structure using High Selectivity Slurry

  • Jeong, So-Young;Seo, Yong-Jin;Kim, Sang-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.4
    • /
    • pp.5-9
    • /
    • 2002
  • Chemical mechanical polishing (CMP) has become the preferred planarization method for multilevel interconnect technology due to its ability to achieve a high degree of feature level planarity. Especially, to achieve the higher density and greater performance, shallow trench isolation (STI)-CMP process has been attracted attention for multilevel interconnection as an essential isolation technology. Also, it was possible to apply the direct STI-CMP process without reverse moat etch step using high selectivity slurry (HSS). In this work, we determined the process margin with optimized process conditions to apply HSS STI-CMP process. Then, we evaluated the reliability and reproducibility of STI-CMP process through the optimal process conditions. The wafer-to-wafer thickness variation and day-by-day reproducibility of STI-CMP process after repeatable tests were investigated. Our experimental results show, quite acceptable and reproducible CMP results with a wafer-to-wafer thickness variation within 400$\AA$.

Hydrodynamic Lubrication Model for Chemical Mechanical Planarization (유체윤활을 고려한 화학기계적 연마 공정에서의 연마대상과 패드 사이의 유동장 해석)

  • 김기현;오수익;전병희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.207-210
    • /
    • 2003
  • The chemical mechanical planarization (CMP) process is a method of planarizing semiconductor wafers with a high degree of success. However, fundamental mechanisms of the process are not fully understood. Several theoretical analyses have been introduced, which are focused on kinematics, von Mises stress distributions and hydrodynamic lubrication aspects. This paper is concerned with hydrodynamic lubrication theory as the chemical mechanical planarization model; the three-dimensional Reynolds equation is applied to predict slurry film thickness and pressure distributions between the pad and the wafer. This paper classifies geometry of wafer into 3 types and focuses on the differences between them.

  • PDF

Chemical Mechanical Polishing Characteristics of Mixed Abrasive Slurry by Adding of Alumina Abrasive in Diluted Silica Slurry (탈이온수로 희석된 실리카 슬러리에 알루미나 연마제가 첨가된 혼합 연마제 슬러리의 CMP 특성)

  • 서용진;박창준;최운식;김상용;박진성;이우선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.465-470
    • /
    • 2003
  • The chemical mechanical polishing (CMP) process has been widely used for the global planarization of multi-layer structures in semiconductor manufacturing. The CMP process can be optimized by several parameters such as equipment, consumables (pad, backing film and slurry), process variables and post-CMP cleaning. However, the COO(cost of ownership) is very high, because of high consumable cost. Especially, among the consumables, the slurry dominates more than 40 %. In this paper, we have studied the CMP characteristics of diluted silica slurry by adding of raw alumina abrasives and annealed alumina abrasives. As an experimental result, we obtained the comparable slurry characteristics compared with original silica slurry in the view-point of high removal rate and low non-uniformity. Therefore, we can reduce the cost of consumables(COC) of CMP process for ULSI applications.

Study on the Optimization of HSS STI-CMP Process (HSS STI-CMP 공정의 최적화에 관한 연구)

  • Jeong, So-Young;Seo, Yong-Jin;Park, Sung-Woo;Kim, Chul-Bok;Kim, Sang-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.149-153
    • /
    • 2003
  • Chemical mechanical polishing (CMP) technology for global planarization of multi-level inter-connection structure has been widely studied for the next generation devices. CMP process has been paid attention to planarized pre-metal dielectric (PMD), inter-layer dielectric (ILD) interconnections. Expecially, shallow trench isolation (STI) used to CMP process on essential. Recently, the direct STI-CMP process without the conventional complex reverse moat etch process has established by using slurry additive with the high selectivity between $SiO_2$ and $Si_3N_4$ films for the purpose of process simplification and n-situ end point detection(EPD). However, STI-CMP process has various defects such as nitride residue, tom oxide and damage of silicon active region. To solve these problems, in this paper, we studied the planarization characteristics using a high selectivity slurry(HSS). As our experimental results, it was possible to achieve a global planarization and STI-CMP process could be dramatically simplified. Also we estimated the reliability through the repeated tests with the optimized process conditions in order to identify the reproducibility of HSS STI-CMP process.

  • PDF