• Title/Summary/Keyword: CMK-3

Search Result 22, Processing Time 0.018 seconds

The Study on Fabrication of LAS System Ceramics for Thermal Shock Resistance from Silicate Minerals: (I) Preparation of Eucryptite Powders with Sillimanite Group, Kaolin Group Minerals (실리케이트 광물을 이용한 내열충격성 LAS계 세라믹스의 제조에 관한 연구: (I) Sillimanite와 Kaolin족 광물을 이용한 Eucryptite 분말합성)

  • 박한수;조경식;문종수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.572-580
    • /
    • 1994
  • With low thermal expansion coefficients, eucryptite (Li2O.Al2O3.2SiO2) and spodumene (Li2O.Al2O3.4SiO2) in LAS ceramic system show good thermal shock resistance. In this study, sillimanite or kaolin group silicate minerals and Li2CO3 were used as starting materials, and if necessary SiO2 or Al2O3 were added for making stoichiometrically formed specimens. By this process, eucryptite powders were synthesized and characterized. The powder mixtures of lithiumcabonate and silicate minerals calcined at 80$0^{\circ}C$ for 2 hrs were made into powder compacts. $\beta$-Eucryptite single phase was formed via intermediate phases of Li2SiO3 and LiAlO2 et al, by heating at 110$0^{\circ}C$ or 120$0^{\circ}C$ for 10 hrs from those powder compacts. When using the sillimanite group minerals, Virginia kyanite or andalusite was reacted to form eucryptite at 120$0^{\circ}C$and CMK International kyanite were completed at 110$0^{\circ}C$. When kaolin group minerals were used, it was found that the synthesizing temperature (100$0^{\circ}C$) of $\beta$-eucryptite from the mixture of New Zealand white kaolin was lower than that from Hadong pink kaolin (110$0^{\circ}C$). The Microstructure of systhesized powder showed the irregular lump shape such as densed crystallines.

  • PDF

Synthesis of mesoporous carbon supported CuO: a new sorbent for $CO_2$ Caapture (이산화탄소 포집용 CuO담지 메조포러스 탄소체 합성)

  • Kim, Dae-Kyung;Peng, Mei Mei;Lee, Joo-Bo;Jeong, Ui-Min;Back, Kyung-Ran;Song, Sung-Hwa;Aziz, Abidov;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12a
    • /
    • pp.196-199
    • /
    • 2011
  • In this study we synthesized mesoporous carbon supported CuO by using mesoporous silica i.e. SBA-15 as the template and cupric nitrate trihydrate ($Cu(NO_3)_23H_2O$)as copper source. The porous CuO was characterized with XRD, TGA, SEM and BET. The result reveals porous CuO has good crystal structure with uniform size of spherical crystal particles. The surface are a ($S_{BET}$) of porous CuO was found to be $153.46m^2g^{-1}$ with a total pore volume ($V_p$)of$0.1516cm^3g^{-1}$ and average pore size of 3.9 nm which was much higher than that of commercial CuO ($S_{BET}$, $7.6m^2g^{-1}$; $V_p$, $0.01cm^3g^{-1}$). The obtained porous CuO was studied for adsorption of $CO_2$and the maximum $CO_2$ adsorption capacity was found to be 67.5 mg/g of the sorbent at $25^{\circ}C$.

  • PDF