• Title/Summary/Keyword: CMAQ PM2.5 simulations

Search Result 10, Processing Time 0.029 seconds

Comparison between Atmospheric Chemistry Model and Observations Utilizing the RAQMS-CMAQ Linkage, Part II : Impact on PM2.5 Mass Concentrations Simulated

  • Lee, DaeGyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.108-114
    • /
    • 2014
  • In the companion paper (Lee et al., 2012), it was showed that CMAQ simulation using a lateral boundary conditions (LBCs) derived from RAQMS-CMAQ linkage, compared to the CMAQ results with the default CMAQ LBCs, improved ozone simulations in the conterminous US domain. In the present paper, the study is extended to investigate the influence of LBCs on PM2.5 simulation. MM5-SMOKE-CMAQ modeling system was used for meteorological field generation, emissions preparation and air quality simulations, respectively. Realtime Air Quality Modeling System (RAQMS) model assimilated with satellite observations were used to generate the CMAQ-ready LBCs. CMAQ PM2.5 simulations with RAQMS LBCs and predefined LBCs were compared with U.S. EPA Air Quality System (AQS) measurements. Mean PM2.5 lateral boundary conditions taken from RAQMS outputs showed strong variations both in the horizontal grid and vertical layers in the northern and western boundaries and affected the results of CMAQ PM2.5 predictions. CMAQ with RAQMS LBCs could improve CMAQ PM2.5 predictions resulting in the improvement of index of agreement from 0.38 to 0.63.

PM2.5 Simulations for the Seoul Metropolitan Area: ( I ) Contributions of Precursor Emissions in the 2013 CAPSS Emissions Inventory (수도권 초미세먼지 농도모사: ( I ) 2013 CAPSS 배출량 목록의 전구물질별 기여도 추정)

  • Kim, Soontae;Bae, Changhan;Kim, Byeong-Uk;Kim, Hyun Cheol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.2
    • /
    • pp.139-158
    • /
    • 2017
  • CMAQ (Community Multiscale Air Quality Model) simulations were carried out to estimate the potential range of contributions on surface $PM_{2.5}$ concentrations over the Seoul Metropolitan Area (SMA) with the gaseous precursors and Primary Particulate Matters(PPM) available from a recent national emissions inventory. In detail, on top of a base simulation utilizing the 2013 Clean Air Policy Supporting System (CAPSS) emission inventory, a set of Brute Force Method (BFM) simulations after reducing anthropogenic $NO_x$, $SO_2$, $NH_3$, VOCs, and PPM emissions released from area, mobile, and point sources in SMA by 50% were performed in turn. Modeling results show that zero-out contributions(ZOC) of $NH_3$ and PPM emissions from SMA are as high as $4{\sim}5{\mu}g/m^3$ over the region during the modeling period. On the contrary, ZOC of local $NO_x$ and $SO_2$ emissions to SMA $PM_{2.5}$ are less than $1{\mu}g/m^3$. Moreover, model analyses indicate that a wintertime $NO_x$ reduction at least up to 50% increases SMA $PM_{2.5}$ concentrations, probably due to increased HNO3 formation and conversion to aerosols under more abundant ozone and radical conditions after the $NO_x$ reduction. However, a nation-wide $NO_x$ reduction decreased SMA $PM_{2.5}$ concentrations even during winter, which implies that nation-wide reductions would be more effective to curtail SMA $PM_{2.5}$ concentrations than localized efforts.

Effect of Aerosol Feedback on Solar Radiation in the Korean Peninsula Using WRF-CMAQ Two-way Coupled Model (WRF-CMAQ 결합모델을 이용한 에어로졸 피드백 효과가 한반도 일사량에 미치는 영향 연구)

  • Yoo, Jung-Woo;Park, Soon-Young;Jeon, WonBae;Kim, Dong-Hyeok;Lee, HwaWoon;Lee, Soon-Hwan;Kim, Hyun-Goo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.5
    • /
    • pp.435-444
    • /
    • 2017
  • In this study, we investigated the effect of aerosol feedback on $PM_{10}$ simulation using a two-way coupled air quality model (WRF-CMAQ). $PM_{10}$ concentration over Korea in January 2014 was simulated, and the aerosol feedback effect on the simulated solar radiation was intensively examined. Two $PM_{10}$ simulations were conducted using the WRF-CMAQ model with (FB) and without(NFB) the aerosol feedback option. We find that the simulated solar radiation in the west part of Korea decreased by up to $-80MJ/m^2$ due to the aerosol feedback effect. The feedback effect was significant in the west part of Korea, showing high $PM_{10}$ estimates due to dense emissions and its long-range transport from China. The aerosol feedback effect contributed to the decreased rRMSE(relative Root Mean Square Error) for solar radiation (47.58% to 30.75%). Aerosol feedback effect on the simulated solar radiation was mainly affected by concentration of $PM_{10}$. Moreover, FB better matched the observed solar radiation and $PM_{10}$ concentration than NFB, implying that taking into account the aerosol direct effects resulted in the improved modeling performance. These results indicate that aerosol feedback effects can play an important role in the simulation of solar radiation over Korean Peninsula.

Numerical Study on the Characteristics of High PM2.5 Episodes in Anmyeondo Area in 2009 (2009년 안면도 지역 고농도 PM2.5 특성에 관한 수치 연구)

  • Jeon, Won-Bae;Lee, Hwa Woon;Lee, Soon-Hwan;Park, Jae-Hyeong;Kim, Hyun-Goo
    • Journal of Environmental Science International
    • /
    • v.23 no.2
    • /
    • pp.249-259
    • /
    • 2014
  • This paper investigates the characteristics of high $PM_{2.5}$ episodes occurred at Anmyeondo area in spring time, 2009. The monthly mean $PM_{2.5}$ concentration during April was the highest in the year and especially, high levels of $PM_{2.5}$ exceeding standard regulation level were sustained consecutively during 5 to 13 April. To analyze more detailed $PM_{2.5}$ characteristics, numerical simulations were carried out using CMAQ(Community Multi-scale Air Quality) with IPR(Integrated Process Rate) and DDM-3D(Decoupled Direct Method). $PM_{2.5}$ level was lower in daytime than that in nighttime due to vigorous vertical mixing during daytime. The chemical composition was showed that ratio of primary ion components such as sulfate($SO_4{^{2-}}$), nitrate($NO_3{^-}$) and ammonium($NH_4{^+}$) were nearly half of total amount of $PM_{2.5}$. Aerosol and transport process dominantly contributed to $PM_{2.5}$ concentration in Anmyeondo area and contribution rate of local emissions was nearly zero since Anmyeondo area has rare anthropogenic PM emission sources. DDM-3D analysis result showed that $PM_{2.5}$ in Anmyeondo area was influenced by emissions from Shanghai and Shandong region of China.

A Study on the Application of Local-scale Air Mass Recirculation Factor to High-concentration PM2.5 Episode in Coastal Areas (연안 지역 고농도 PM2.5 사례에 대한 국지 규모 공기괴 재순환 지수 적용 연구)

  • Jung-woo Yoo;Ji Seon Kim;Eun Ji Kim;Soon-Hwan Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.8
    • /
    • pp.521-531
    • /
    • 2023
  • This study analyzed the impact of recirculation on high-concentration PM2.5 in the coastal area. Through the analysis of observational data, it was observed that the development of sea breeze led to an increase in PM2.5 and SO42- concentrations. Hysplit backward trajectory analysis confirmed the occurrence of air mass recirculation. Results from WRF and CMAQ numerical simulations indicated that pollutants transported from land to sea during the night were re-transported to the land by daytime sea breeze, leading to high-concentration PM2.5 in Busan. To quantitatively investigate the recirculation a recirculation factor (RF) was calculated, showing an increase in RF values during high-concentration PM2.5 episodes. However, the RF values varied slightly depending on the time resolution of meteorological data used for the calculations. This variation was attributed to the terrain characteristics at observation sites. Additionally, during long-range transported days leading to nationwide high-concentration PM2.5 events, synoptic-scale circulation dominated, resulting in weaker correlation between PM2.5 concentration and RF values. This study enhances the understanding of the influence of recirculation on air pollution. However, it is important to consider the impact of temporal resolution and terrain characteristics when using RF for evaluating recirculation during episodes of air pollution.

Evaluation of the Effectiveness of Emission Control Measures to Improve PM2.5 Concentration in South Korea (미세먼지 농도 개선을 위한 배출량 저감대책 효과 분석)

  • Kim, Eunhye;Bae, Changhan;Yoo, Chul;Kim, Byeong-Uk;Kim, Hyun Cheol;Kim, Soontae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.469-485
    • /
    • 2018
  • On September 26, 2017, South Korean government has established the Particulate Matter Comprehensive Plan to improve Korean air quality by 2022, which aims to reduce annual mean surface $PM_{2.5}$ concentration to $18{\mu}g/m^3$. This study demonstrates quantitative assessment of predicted $PM_{2.5}$ concentrations over 17 South Korean regions with the enforcement of the comprehensive plan. We utilize the Community Multi-scale Air Quality (CMAQ) modeling system with CAPSS 2013 and CREATE 2015 emissions inventories. Simulations are conducted for 2015 with the base emissions and the planned emissions, and impacts from model biases are minimized using the RRF (Relative Response Factor). With effective emission reduction scenario suggested by the comprehensive plan, the model demonstrates that the surface $PM_{2.5}$ concentration may decrease by $6{\mu}g/m^3$ ($23{\mu}g/m^3{\rightarrow}17{\mu}g/m^3$) and $7{\mu}g/m^3$ ($25{\mu}g/m^3{\rightarrow}18{\mu}g/m^3$) for Seoul and South Korea, respectively. The number of high $PM_{2.5}$ days(daily mean>$25{\mu}g/m^3$) also decreases from 21 days to 4 days.

PM2.5 Simulations for the Seoul Metropolitan Area: (II) Estimation of Self-Contributions and Emission-to-PM2.5 Conversion Rates for Each Source Category (수도권 초미세먼지 농도모사 : (II) 오염원별, 배출물질별 자체 기여도 및 전환율 산정)

  • Kim, Soontae;Bae, Changhan;Yoo, Chul;Kim, Byeong-Uk;Kim, Hyun Cheol;Moon, Nankyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.377-392
    • /
    • 2017
  • A set of BFM (Brute Force Method) simulations with the CMAQ (Community Multiscale Air Quality) model were conducted in order to estimate self-contributions and conversion rates of PPM (Primary $PM_{2.5}$), $NO_x$, $SO_2$, $NH_3$, and VOC emissions to $PM_{2.5}$ concentrations over the SMA (Seoul Metropolitan Area). CAPSS (Clean Air Policy Support System) 2013 EI (emissions inventory) from the NIER (National Institute of Environmental Research) was used for the base and sensitivity simulations. SCCs (Source Classification Codes) in the EI were utilized to group the emissions into area, mobile, and point source categories. PPM and $PM_{2.5}$ precursor emissions from each source category were reduced by 50%. In turn, air quality was simulated with CMAQ during January, April, July, and October in 2014 for the BFM runs. In this study, seasonal variations of SMA $PM_{2.5}$ self-sensitivities to PPM, $SO_2$, and $NH_3$ emissions can be observed even when the seasonal emission rates are almost identical. For example, when the mobile PPM emissions from the SMA were 634 TPM (Tons Per Month) and 603 TPM in January and July, self-contributions of the emissions to monthly mean $PM_{2.5}$ were $2.7{\mu}g/m^3$ and $1.3{\mu}g/m^3$ for the months, respectively. Similarly, while $NH_3$ emissions from area sources were 4,169 TPM and 3,951 TPM in January and July, the self-contributions to monthly mean $PM_{2.5}$ for the months were $2.0{\mu}g/m^3$ and $4.4{\mu}g/m^3$, respectively. Meanwhile, emission-to-$PM_{2.5}$ conversion rates of precursors vary among source categories. For instance, the annual mean conversion rates of the SMA mobile, area, and point sources were 19.3, 10.8, and $6.6{\mu}g/m^3/10^6TPY$ for $SO_2$ emissions while those rates for PPM emissions were 268.6, 207.7, and 181.5 (${\mu}g/m^3/10^6TPY$), respectively, over the region. The results demonstrate that SMA $PM_{2.5}$ responses to the same amount of reduction in precursor emissions differ for source categories and in time (e.g. seasons), which is important when the cost-benefit analysis is conducted during air quality improvement planning. On the other hand, annual mean $PM_{2.5}$ sensitivities to the SMA $NO_x$ emissions remains still negative even after a 50% reduction in emission category which implies that more aggressive $NO_x$ reductions are required for the SMA to overcome '$NO_x$ disbenefit' under the base condition.

Assessment of Emission Data for Improvement of Air Quality Simulation in Ulsan (울산 지역 대기질 모의능력 개선을 위한 배출량자료 평가)

  • Jo, Yu-Jin;Kim, Cheol-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.5
    • /
    • pp.456-471
    • /
    • 2015
  • Emission source term is one of the strong controlling factors for the air quality simulation capability, particularly over the urban area. Ulsan is an industrial area and frequently required to simulate for environmental assessment. In this study, two CAPSS (Clean Air Policy Support System) emission data; CAPSS-2003 and CAPSS-2010 in Ulsan, were employed as an input data for WRF-CMAQ air quality model for emission assessment. The simulated results were compared with observations for the local emission dominant synoptic conditions which had negative vorticities and lower geostrophic wind speed at 850hPa weather maps. The measurements of CO, $NO_2$, $SO_2$ and $PM_{10}$ concentrations were compared with simulations and the 'scaling factors' of emissions for CO, $NO_2$, $SO_2$, and $PM_{10}$ were suggested in in aggregative and quantitative manner. The results showed that CAPSS-2003 showed no critical discrepancies of CO and $NO_2$ observations with simulations, while $SO_2$ was overestimated by a factor of more than 12, while $PM_{10}$ was underestimated by a factor of more than 20 times. However, CAPSS-2010 case showed that $SO_2$ and $PM_{10}$ emission were much more improved than CAPSS-2003. However, $SO_2$ was still overestimated by a factor of more than 2, and $PM_{10}$ underestimated by a factor of 5, while there was no significant improvement for CO and $NO_2$ emission. The estimated factors identified in this study can be used as'scaling factors'for optimizing the emissions of air pollutants, particularly $SO_2$ and $PM_{10}$ for the realistic air quality simulation in Ulsan.

Impact of Emissions from Major Point Sources in Chungcheongnam-do on Surface Fine Particulate Matter Concentration in the Surrounding Area (충남지역 대형 점오염원이 주변지역 초미세먼지 농도에 미치는 영향)

  • Kim, Soontae;Kim, Okgil;Kim, Byeong-Uk;Kim, Hyun Cheol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.2
    • /
    • pp.159-173
    • /
    • 2017
  • The Weather Research and Forecast (WRF) - Community Multiscale Air Quality (CMAQ) system was applied to investigate the influence of major point sources located in Chungcheongnam-do (CN) on surface $PM_{2.5}$ (Particulate Matter of which diameter is $2.5{\mu}m$ or less) concentrations in its surrounding areas. Uncertainties associated with contribution estimations were examined through cross-comparison of modeling results using various combinations of model inputs and setups; two meteorological datasets developed with WRF for 2010 and 2014, and two domestic emission inventories for 2010 and 2013 were used to estimate contributions of major point sources in CN. The results show that contributions of major point sources in CN to annual $PM_{2.5}$ concentrations over Seoul, Incheon, Gyeonggi, and CN ranged $0.51{\sim}1.63{\mu}g/m^3$, $0.71{\sim}1.62{\mu}g/m^3$, $0.63{\sim}1.66{\mu}g/m^3$, and $1.04{\sim}1.86{\mu}g/m^3$, respectively, depending on meteorology and emission inventory choice. It indicates that the contributions over the surrounding areas can be affected by model inputs significantly. Nitrate was the most dominant $PM_{2.5}$ component that was increased by major point sources in CN followed by sulfate, ammonium, and others. Based on the model simulations, it was estimated that primary $PM_{2.5}$ $(PPM)-to-PM_{2.5}$ conversion rates were 41.3~50.7 ($10^{-6}{\mu}g/m^3/TPY$) for CN, and 12.4~18.3 ($10^{-6}{\mu}g/m^3/TPY$) for Seoul, Incheon, and Gyeonggi, respectively. In addition, spatial gradients of PPM contributions show very steep trends. $NO_X$-to-nitrate conversion rates were 7.61~12.3 ($10^{-6}{\mu}g/m^3/TPY$) for CN, and 3.94~11.3 ($10^{-6}{\mu}g/m^3/TPY$) for the sub-regions in the SMA. $SO_2$-to-sulfate conversion rates were 4.04~5.28 ($10^{-6}{\mu}g/m^3/TPY$) for CN, and 3.73~4.43 ($10^{-6}{\mu}g/m^3/TPY$) for the SMA, respectively.

Impact of Emission Inventory Choices on PM10 Forecast Accuracy and Contributions in the Seoul Metropolitan Area (배출량 목록에 따른 수도권 PM10 예보 정합도 및 국내외 기여도 분석)

  • Bae, Changhan;Kim, Eunhye;Kim, Byeong-Uk;Kim, Hyun Cheol;Woo, Jung-Hun;Moon, Kwang-Joo;Shin, Hye-Jung;Song, In Ho;Kim, Soontae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.5
    • /
    • pp.497-514
    • /
    • 2017
  • This study quantitatively analyzes the effects of emission inventory choices on the simulated particulate matter (PM) concentrations and the domestic/foreign contributions in the Seoul Metropolitan Area (SMA) with an air quality forecasting system. The forecasting system is composed of Weather Research and Forecasting (WRF)-Sparse Matrix Operator Kernel Emissions (SMOKE)-Community Multi-Scale Air Quality (CMAQ). Different domestic and foreign emission inventories were selectively adopted to set up four sets of emissions inputs for air quality simulations in this study. All modeling cases showed that model performance statistics satisfied the criteria levels (correlation coefficient >0.7, fractional error <50%) suggested by previous studies. Notwithstanding the apparently good model performance of total PM concentrations by all emission cases, annual average concentrations of simulated total PM concentrations varied up to $20{\mu}g/m^3$ (160%) depending on the combination of emission inventories. In detail, the difference in simulated annual average concentrations of the primary PM coarse (PMC) was up to $25.2{\mu}g/m^3$ (6.5 times) compared with other cases. Furthermore, model performance analyses on PM species showed that the difference in the simulated primary PMC led to gross model overestimation in general, which indicates that the primary PMC emissions need to be improved. The contribution analysis using model direct outputs indicated that the domestic contributions to the annual average PM concentrations in the SMA vary from 44% to 67%. To account for the uncertainty of the simulated concentration, the contribution correction factor method proposed by Bae et al. (2017) was applied, which resulted in converged contributions(from 48% to 57%). We believe this study shows that it is necessary to improve the simulated concentrations of PM components in order to enhance the accuracy of the forecasting model. It is deemed that these improvements will provide more accurate contribution results.